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Chapter 1

Introduction

Powder compaction is a process in which granular materials are made cohesive
through mechanical densification. This may or may not involve temperature
and permit an efficient production of parts ranging widely in size and shape
to close tolerances with low drying shrinkage (Reed, 1995). Metallurgical
(German, 1984) and pharmaceutical (Lordi and Cuitiño, 1997) applications
are common; moreover, forming of traditional (for instance: ceramic tiles,
porcelain products) and structural ceramics (for instance: chip carriers, spark
plugs, cutting tools) involves essentially powder compaction.

In the case of advanced ceramics, a ceramic powder is usually obtained
through spray-drying and is made up of particles (granules) of dimensions
ranging between 50 and 200 µm (Fig. 1.1), coated with the binder system.

Figure 1.1: SEM micrograph of alumina powder (bar = 100 µm).

The granules are aggregates of crystals having dimensions on the order 1 µm.
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8 1. Introduction

Densification of ceramic powders induced by cold pressing can be divided
in three main stages (Matsumoto, 1986; Reed, 1995; Bortzmeyer, 1996):

• Phase I granule sliding and rearrangement,

• Phase II granule deformation,

• Phase III granule densification.

The three phases of densification can be distinguished by the changes in the
inclination of the semi-logarithmic plot of density versus applied pressure.
These determine the “breakpoint pressure” and “joining pressure” points. The
Phase I always occurs in early volumetric deformation of granular materials
(at low stress), so that it has been thoroughly investigated for geomateri-
als. However, densification process in ceramic powders is often highly non
homogeneous, so that usually at least two phases coexist. With reference to
continuum mechanics modelling, Phases II and III of deformation are related
to the gain in cohesion of the material and have been scarcely investigated.

Many technical, unresolved difficulties arise in the forming process of ce-
ramic materials (Brown and Weber, 1988; Bortzmeyer, 1996). In fact, if on
one hand the compact should result intact after ejection, should be handleable
without failure and essentially free of macro defects, on the other hand, de-
fects of various nature are always present in the greens (Deis and Lannutti,
1998; Ewsuk, 1997; Hausner and Kumar-Mal, 1982; Glass and Ewsuk, 1997;
Thompson, 1981b), badly influencing local shrinkage during sintering (Deis
and Lannutti, 1998; Hausner and Kumar-Mal, 1982). Defects can be caused
by densification process, that may involve highly inhomogeneous strain fields,
or by mold ejection, often producing end and ring capping, laminations, shape
distortions, surface defects, vertical cracks, and large pores (Glass and Ewsuk,
1997).

In view of a reduction in the defects – crucial in setting the reliability of
the final piece – simulations of the forming process become an important tool
to optimize ceramics design (in terms of shape of final piece and type and
composition of the powder).

This monograph is dedicated to the development of a constitutive model
capable of describing the mechanical behaviour of ceramic powders. A phe-
nomenological approach has been adopted, in the framework of the classical
theory of plasticity. In particular, two fundamental features of the densi-
fication process are investigated: the increase in cohesion and the coupling
between elastic and plastic properties.
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Compaction of granular materials requires the description of the transition
from a granular material (corresponding to Phase I) to a dense (Phase II) or,
even, a fully-dense (Phase III) solid. Since granular materials are character-
ized by peculiar properties, much different from dense solids, the constitutive
modelling has to describe a transition between two remarkably different mate-
rials. A solution for this problem is provided in this monograph.

The first step in developing an elastoplastic constitutive model is the adop-
tion of a yield surface. This is done in Chapter 2, where a new yield function
has been proposed for modelling the inelastic behaviour of granular materials
and, more in general, quasibrittle and frictional materials. The formulation
of the yield fuction has been made necessary by the observation that the pro-
posed yield function allows the possibility of describing a transition between
the shape of a yield surface typical of a class of materials to that typical of
another class of materials. This peculiar feature is the fundamental key to
model the behaviour of materials which become cohesive during hardening,
such as ceramic powders, so that the shape of the yield surface evolves from
that typical of a granular material to that typical of a dense material. No
yield functions with this property were previously available.

The yield function —which is shown to fit very well experimental data
relative to a broad class of materials including soils, concretes, rocks, metallic
foams, porous metals, and polymers— represents a single, convex and smooth
surface in stress space approaching as limit situations well-known criteria and
the extreme limits of convexity in the deviatoric plane. The yield function
is therefore a generalization of several criteria, including von Mises, Drucker-
Prager, Tresca, modified Tresca, Coulomb-Mohr, modified Cam-clay, and —
concerning the deviatoric section— Rankine and Ottosen. Convexity of the
function is proved by developing two propositions relating convexity of the
yield surface to convexity of the corresponding function. These proposition
are general and therefore may be employed to generate other convex yield
functions.

The elastoplastic coupling formulation (in the sense of Hueckel, 1976;
Maier and Hueckel, 1979) needed to develop the constitutive model in a small
strain formulation is introduced in Chapter 3. The use of elastoplastic coupling
to model the densification process of granular materials may be motivated by
the observation that elastic unloading in uniaxial deformation tests exhibits
a tendency towards stiffening driven by increase in cohesion, as sketched in
Fig. 1.2. In particular, a new law for the elastic potential is formulated, func-
tion of both elastic and plastic strains. When the cohesion is null, as in the
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Figure 1.2: Elastic stiffening during uniaxial deformation test (experimental results on
alumina powder).

case of ceramic powders during the Pashe I of densification, the elastic law re-
duces to that typical of granular materials [namely the elastic law employed in
the Cam-clay model (Roscoe and Schofield, 1963; Roscoe and Burland, 1968)],
but when the porosity decreases and consequently the cohesion increases, the
elastic law approaches the usual linear elastic law, typical of a dense material.

Two hardening rules are introduced. The first one, relating forming pres-
sure and material density, accounts for the compaction characteristics of ce-
ramic powders. The second one, relating forming pressure and cohesion, ac-
counts for the increase in cohesion during Phase II and III of compaction. The
model has been calibrated on the basis of experimental results (partly already
available and partly ad hoc performed) on an alumina powder. Finally, the
model has been implemented employing the subroutine UMAT, available in
the Finite Element general-purpose code ABAQUS, in order to simulate a
simple forming process, which has been subsequently realized to validate the
model capabilities.

In Chapter 4 the model is extended to a finite strain formulation. This
may be motivated by the fact that large strains, up to 50%, are usually in-
volved in the forming process of ceramic powders. A general constitutive
framework for isothermal and time independent large elastoplastic deforma-
tions is presented following concepts developed by Hill and Rice (1973), Hill
(1978) and Bigoni (2000). This general framework does not imply a particular
choice of elastic and plastic strain decomposition, hypo- or hyper-elastic law,
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flow and hardening rules, and therefore allows us to include the elastoplastic
coupling already developed in small strain. In order to set up the constitu-
tive model, we introduce: the multiplicative elastic and plastic decomposition;
the requirement of isotropy of the elastic law; finally, the generalization to fi-
nite strains of the elastic potential, yield function, flow and hardening rules,
which were introduced in Chapter 3 within the context of the infinitesimal
theory. As a result, a large-strain formulation is found of a model capable of
describing the mechanical behaviour of a granular material becoming cohesive
during compaction. While remarking again that no similar model was avail-
able in the literature, we note that the given constitutive framework could
also ‘vice-versa’ be used to describe degradation of cohesion due to damage in
quasibrittle materials such as for instance concrete or cemented sands.

The modelling of forming of ceramic powders is concluded in Chapter 4,
with the large strain formulation. It is however known that deformation of
granular materials occurring during forming is accompanied by several ma-
terial instabilities, occurring at different scales. Aimed at a clarification of
this broad topic, the last part of the thesis (Chapter 5) has been devoted to a
peculiar kind of material instability, the so-called ‘flutter instability’, which is
thought to be characteristic of granular material, or, in other words of materi-
als where the microscopic behaviour is dominated by Coulomb friction. This
instability, precognized by Rice (1977) and studied by Loret (1992), Bigoni
(1995), Bigoni and Loret (1999) and Loret et al. (2000), corresponds to the
occurrence of two complex conjugate eigenvalues of the acoustic tensor and
results still largely unknown. In particular, a clear mechanical interpretation
of this isntability is still lacking. A rational step toward the clarification of
this issue is performed in Chapter 5, where flutter instability is analyzed as
the response of an infinite medium to a dynamic perturbation in terms of a
pulsating force dipole superimposed upon a given uniform deformation. The
infinite-body, dynamic Green’s function is obtained for the plastic branch of
a constitutive equation evidencing flutter and this is employed to produce the
dipole providing the perturbation to the infinite medium. The response is
investigated in various circumstances, including the case where the eigenval-
ues of the acoustic tensor are complex. It is shown that the response to the
dynamic perturbation remains bounded until the eigenvalues lie in the real
range, while a blow-up of the solution is detected as soon as the complex
range is entered.
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Chapter 2

Yield criteria for granular materials

2.1 Introduction

Yielding or damage of quasibrittle and frictional materials (a collective de-
nomination for soil, concrete, rock, granular media, coal, cast iron, ice, porous
metals, metallic foams, as well as certain types of ceramic) is complicated by
many effects, including dependence on the first and third stress invariants
(the so-called ‘pressure-sensitivity’ and ‘Lode-dependence’ of yielding), and
represents the subject of an intense research effort. Restricting attention to
the formulation of yield criteria, research moved in two directions: one was
to develop such criteria on the basis of micromechanics considerations, while
another was to find direct interpolations to experimental data. Examples of
yield functions generated within the former approach are numerous and, as
a paradigmatic case, we may mention the celebrated Gurson criterion (Gur-
son, 1977). The latter approach was also broadly followed, providing some
very successful yield conditions, such as for instance the Ottosen criterion
for concrete (Ottosen, 1977). Although very fundamental in essence, the mi-
cromechanics approach has limits however, particularly when employed for
geomaterials. For instance, it is usually based on variational formulations,
possible —for inelastic materials— only for solids obeying the postulate of
maximum dissipation at a microscale, which is typically violated for frictional
materials such as for instance soils.

A purely phenomenological point of view is assumed in the present work,
wherein a new yield function1 is formulated, tailored to interpolate experi-

0This part is taken from Bigoni and Piccolroaz (2004) Yield criteria for quasibrittle and
frictional materials, in press.

1We need not distinguish here between yield, damage and failure. Within a phenomeno-
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14 2. Yield criteria for granular materials

mental results for quasibrittle and frictional materials, under the assumption
of isotropy. The interest in this proposal lies in the features evidenced by the
criterion. These are:

• finite extent of elastic range both in tension and in compression;

• non-circular deviatoric section of the yield surface, which may approach
both the upper and lower convexity limits for extreme values of material
parameters;

• smoothness of the yield surface;

• possibility of stretching the yield surface to extreme shapes and related
capability of interpolating a broad class of experimental data for different
materials;

• reduction to known criteria in limit situations;

• convexity of the yield function (and thus of the yield surface);

• simple mathematical expression.

None of the above features is essential, in the sense that a plasticity theory can
be developed without all of the above, but all are desirable for the development
of certain models of interest, particularly in the field of geomaterials. This is
a crucial point, deserving a carefully explanation. In particular, while some of
the above requirements have a self-evident meaning, smoothness and convexity
need some discussion.

Although experiments are inconclusive in this respect (Naghdi et al. 1958;
Paul, 1968; Phillips, 1974), theoretical speculations (sometimes criticized,
Naghdi and Srinivasa, 1994) suggest that corners should be expected to form
in the yield surface for single crystals and polycrystals (Hill, 1967a). There-
fore, smoothness of the yield surface might be considered a mere simplification
in the constitutive modelling of metals. However, the situation of quasibrittle
and frictional materials is completely different. For such materials, in fact,
evidence supporting corner formation is weak2, so that, presently, smooth-
ness of the yield surface is a broadly employed concept and models developed
under this assumption are still very promising. Moreover, corners often are

logical approach, all these situations are based on the concept of stress range, bounded by
a given hypersurface defined in stress space.

2Some argument in favour of corner formation in geomaterials have been given by Rud-
nicki and Rice (1975).
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included in the constitutive description of a material for the mere fact that an
appropriate, smooth yield function is simply not available (this is usually the
case of the apex of the Drucker-Prager yield surface and of the corner which
may exist at the intersection of a smooth, open yield surface with a cap).

Regarding convexity of the yield surface, we note that this follows for poly-
crystals from Schmid laws of single crystals (Bishop and Hill, 1951; Mandel,
1966). However, differently from smoothness, convexity is supported by exper-
iments in practically all materials and is a useful mathematical property, which
is the basis of limit analysis and becomes of fundamental importance in set-
ting variational inequalities for plasticity (Duvaut and Lions, 1976). We may
therefore conclude that —in the absence of a clear and specific motivation—
it is not sensible to employ a yield function that violates convexity.

A number of failure surfaces have been proposed meeting some of the
above requirements, among others, we quote the Willam and Warnke (1975),
Ottosen (1977) and Hisieh et al. (1982) criteria for concrete, the Argyris et al.
(1974), Matsuoka and Nakai (1977), Lade and Kim (1995), and Lade (1997)
criteria for soils. For all these criteria, while some information can be found
about the range of parameters corresponding to convexity of the yield surfaces,
nothing is known about the convexity of the corresponding yield functions.

Convexity of a yield function implies convexity of the corresponding yield
surface, but convexity of a level set of a function does not imply convexity
of the function itself. While it can be pointed out that a convex yield func-
tion can in principle always be found to represent a convex yield surface,
the ‘practical problem’ of finding it in a reasonably simple form may be a
formidable one. From this respect, general propositions would be of interest,
but the only contribution of which the authors are aware in this respect is
quite recent (Mollica and Srinivasa, 2002). A purpose of the present work is
to provide definitive results in this direction. In particular, the range of mate-
rial parameters corresponding to convexity of the yield function proposed in
this work is obtained by developing a general proposition that can be useful
for analyzing convexity of a broad class of yield functions. The proposition
is finally extended to introduce the possibility of describing a modification in
shape of the deviatoric section with pressure. The propositions are shown to
be constructive, in the sense that these may be employed to generate convex
yield functions (examples of which are also included).

Beyond the issue of convexity, the central purpose of this work is the
proposal of a yield criterion [see eqns. (2.6)–(2.9)]. This meets all of the above-
listed requirements and can be viewed as a generalization of the following
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criteria: von Mises, Drucker-Prager, Tresca, modified Tresca, Coulomb-Mohr,
modified Cam-clay, Deshpande and Fleck (2000), Rankine, and Ottosen (1977)
(the last two for the deviatoric section). Obviously, the criterion may account
for situations which cannot be described by the simple criteria to which it
reduces in particular cases. Several examples of this may be found in the field
of granular media, where several ad hoc yield conditions have been proposed,
which may describe one peculiar material, but cannot describe another. In
the present work, it is shown with several examples that our yield criterion
provides a unified description for a extremely broad class of quasi-brittle and
frictional materials. Beyond the evident interest in generalization, there is a
specific motivation for advocating the necessity of having a single criterion
describing different materials. This lies in the fact that during hardening,
a yield surface may evolve from the shape typical of a certain material to
that typical of another. An evident example of this behaviour can be found
in the field of granular materials, referring in particular to metal powders.
These powders become cohesive during compaction, so that the material is
initially a true granular material, but becomes finally a porous metal, whose
porosity may be almost completely eliminated through sintering. The key
to simulate this process is plasticity theory, so that a yield function must be
employed evolving from the typical shape of a granular material (‘triangular’
deviatoric and ‘drop-shaped’ meridian sections), to that of a porous metal
(circular deviatoric and elliptic meridian sections) and, in case of sintering,
to that of a fully-dense metal (von Mises criterion). Another example of
extreme shape variation of yield function during hardening is the process of
decohesion of a rock-like material due to damage accumulation, a situation in
a sense opposite to that described above. Evidently, a continuous distortion
of the yield surface can be described employing the criterion proposed in this
work and simply making material parameters depend on hardening.

2.2 A premise on Haigh-Westergaard representation

The analysis will be restricted to isotropic behaviour, therefore the Haigh-
Westergaard representation of the yield locus is employed (Hill, 1950a). This
is well-known, so that we limit the presentation here to a few remarks that
may be useful in the following. First, we recall that:

A1. a single point in the Haigh-Westergaard space is representative of the
infinite (to the power three) stress tensors having the same principal
values;
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A2. due to the arbitrariness in the ordering of the eigenvalues of a tensor, six
different points correspond in the Haigh-Westergaard representation to a
given stress tensor. As a result, the yield surface results symmetric about
the projections of the principal axes on the deviatoric plane (Fig. 2.1);

A3. the Haigh-Westergaard representation preserves the scalar product only
between coaxial tensors;

A4. a convex yield surface —for a material with a fixed yield strength under
triaxial compression— must be internal to the two limit situations shown
in Fig. 2.1 (Haythornthwaite, 1985). Note that the inner bound will be
referred as ‘the Rankine limit’.

��1

��2 ��3

�

Upper convexity
limit

Lower convexity
(Rankine) limit

�

�
� �

�

Figure 2.1: Deviatoric section: definition of angle θ, symmetries, lower and upper convex-
ity bounds.

Due to isotropy, the analysis of yielding can be pursued fixing once and for all
a reference system and restricting to all stress tensors diagonal in this system.
We will refer to this setting as to the Haigh-Westergaard representation. When
tensors (for instance, the yield function gradient) coaxial to the reference
system are represented, the scalar product is preserved, property A3. In
the Haigh-Westergaard representation, the hydrostatic and deviatoric stress
components are defined by the invariants

p = −tr σ

3
, q =

√
3J2, (2.1)

where
J2 =

1
2
S · S, S = σ − tr σ

3
I, (2.2)
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in which S is the deviatoric stress, I is the identity tensor, a dot denotes
scalar product and tr denotes the trace operator, so that A · B = trABT , for
every second-order tensors A and B. The position of the stress point in the
deviatoric plane is singled out by the Lode (1926) angle θ defined as

θ =
1
3

cos−1

(
3
√

3
2

J3

J
3/2
2

)
, J3 =

1
3

tr S3, (2.3)

so that θ ∈ [0, π/3]. As a consequence of property (A2) of the Haigh-
Westergaard representation, a single value of θ corresponds to six different
points in the deviatoric plane (Fig. 2.1). The following gradients of the in-
variants, that will be useful later,

∂p

∂σ
= −1

3
I,

∂J2

∂σ
= S,

∂J3

∂σ
= S2 − tr S2

3
I,

∂θ

∂σ
= − 9

2q3sin 3θ

(
S2 − tr S2

3
I − q

cos 3θ
3

S

)
,

(2.4)

can be obtained from well-known formulae (e.g. Truesdell and Noll, 1965,
Sect. 9) using the identity

∂S

∂σ
= I ⊗ I − 1

3
I ⊗ I, (2.5)

where the symbol ⊗ denotes the usual dyadic product and I ⊗ I is the sym-
metrizing fourth-order tensor, defined for every tensor A as

(I ⊗ I)[A] =
A + AT

2
.

Note that ∂θ/∂σ is orthogonal to I and to the deviatoric stress S.

2.3 A new yield function

We propose the seven-parameters yield function F : Sym → R∪{+∞} defined
as:

F (σ) = f(p) +
q

g(θ)
, (2.6)

where the dependence on the stress σ is included in the invariants p, q and θ,
eqns. (2.1) and (2.3), through the ‘meridian’ function

f(p) =




−Mpc

√
(Φ − Φm) [2(1 − α)Φ + α] if Φ ∈ [0, 1],

+∞ if Φ /∈ [0, 1],
(2.7)
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where
Φ =

p+ c

pc + c
, (2.8)

describing the pressure-sensitivity3 and the ‘deviatoric’ function

g(θ) =
1

cos
[
β π

6 − 1
3 cos−1 (γ cos 3θ)

] , (2.9)

describing the Lode-dependence of yielding. The seven, non-negative material
parameters:

M > 0, pc > 0, c ≥ 0, 0 < α < 2, m > 1︸ ︷︷ ︸
defining f(p)

, 0 ≤ β ≤ 2, 0 ≤ γ < 1︸ ︷︷ ︸
defining g(θ)

, (2.10)

define the shape of the associated (single, smooth) yield surface. In particular,
M controls the pressure-sensitivity, pc and c are the yield strengths under
isotropic compression and tension, respectively. Parameters α and m define
the distortion of the meridian section, whereas β and γ model the shape of
the deviatoric section. Note that the deviatoric function describes a piecewise
linear deviatoric surface in the limit γ −→ 1. Finally, it is important to remark
that within the interval of β ∈ [0, 2] the yield function is convex independently
of the values assumed by parameter γ. Convexity requirements, that will be
proved later, impose a broader variation of β than (2.10)6, but the interval
where β may range becomes a function of γ. In particular, the yield function
is convex when

2 − B(γ) ≤ β ≤ B(γ), (2.11)

where function B(γ) takes values within the interval ]2, 4], when γ ranges in
[0, 1[ and is defined as

B(γ) = 3 − 6
π

tan−1 1 − 2 cos z − 2 cos2z

2 sin z(1 − cos z)

∣∣∣∣
z=2/3(π−cos−1γ)

. (2.12)

The yield function (2.6) corresponds to the following yield surface:

q = −f(p)g(θ), p ∈ [−c, pc], θ ∈ [0, π/3], (2.13)
3The meridian function can be written in an alternative form by using the Macauley

bracket operator, defined for every scalar α as < α >= max{0, α}, and the indicator function
χ[0,1](Φ), which takes the value 0 when Φ ∈ [0, 1] and is equal to +∞ otherwise

f(p) = −Mpc

√(
Φ̃ − Φ̃m

) [
2(1 − α)Φ̃ + α

]
+ χ[0,1](Φ), Φ̃ =< Φ > − < Φ − 1 > .
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which makes explicit the fact that f(p) and g(θ) define the shape of the merid-
ian and deviatoric sections, respectively.

The yield surface (2.13) is sketched in Figs. 2.2–2.3 for different values of
the seven above-defined material parameters (non-dimensionalization is intro-
duced through division by pc in Fig. 2.2). In particular, meridian sections are
reported in Figs. 2.2 (g(θ) = 1 has been taken), whereas Fig. 2.3 pertains to
deviatoric sections.
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Figure 2.2: Meridian section: effects related to the variation of parameters M (a), c/pc

(b), m (c), and α (d).

As a reference, the case corresponding to the modified Cam-clay intro-
duced by Roscoe and Burland (1968) and Schofield and Wroth (1968) and
corresponding to β = 1, γ = 0, α = 1, m = 2, and c = 0 is reported in Fig. 2.2
as a solid line, for M = 0.75. The distortion of meridian section reported in
Fig. 2.2 (a) —where M = 0.25, 0.75, 1.25— can also be obtained within the
framework of the modified Cam-clay, whereas the effect of an increase in co-
hesion reported in Fig. 2.2 (b) —where c/pc = 0, 0.2, 0.4— may be employed
to model the gain in cohesion consequent to plastic strain, during compaction
of powders.

The shape distortion induced by the variation of parameters m and α,
Fig. 2.2 (c) —where m = 1.2, 2, 4— and (d) —where α = 0.01, 1.00, 1.99— is
crucial to fit experimental results relative to frictional materials.

A unique feature of the proposed model is the possibility of extreme shape
distortion of the deviatoric section, which may range between the upper and
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Figure 2.3: Deviatoric section: effects related to the variation of β and γ. Variation of
β = 0, 0.5, 1, 1.5, 2 at fixed γ = 0.99 (a) and γ = 1 (b). Variation of γ = 1, 0.75, 0 at fixed
β = 0 (c) and β = 0.5 (d).

lower convexity limits, and approach Tresca, von Mises and Coulomb-Mohr.
This is sketched in Fig. 2.3, where to simplify reading of the figure, function
g(θ) has been normalized through division by g(π/3), so that all deviatoric
sections coincide at the point θ = π/3. The use of our model may there-
fore allow one to simply obtain a convex, smooth approximation of several
yielding criteria (Tresca and Coulomb-Mohr, for instance). If this may be not
substantial from theoretical point of view, it clearly avoids the necessity of
introducing independent yielding mechanisms.

Parameter γ is kept fixed in Figs. 2.3 (a) and (b) and equal to 0.99 and 1,
respectively, whereas parameter β is fixed in Figs. 2.3 (c) and (d) and equal
to 0 and 1/2. Therefore, figures (a) and (b) demonstrate the effect of the
variation in β (= 0, 0.5, 1, 1.5, 2) which makes possible a distortion of the
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yield surface from the upper to lower convexity limits going through Tresca
and Coulomb-Mohr shapes. The role played by γ (= 1, 0.75, 0) is investigated
in figures (c) and (d), from which it becomes evident that γ has a smoothing
effect on the corners, emerging in the limit γ = 1. The von Mises (circular)
deviatoric section emerges when γ = 0.

The yield surface in the biaxial plane σ1 versus σ2, with σ3 = 0 is sketched
in Fig. 2.4, where axes are normalized through division by the uniaxial tensile
strength ft. In particular, the figure pertains to M = 0.75, pc = 50c, m = 2,
and α = 1, whereas γ = 0.99 is fixed and β is equal to {0, 0.5, 1, 1.5, 2} in
Fig. 2.4 (a) and, vice-versa, β = 0 is fixed and γ is equal to {0, 0.75, 0.99} in
Fig. 2.4 (b).
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Figure 2.4: Yield surface in the biaxial plane σ1/ft vs. σ2/ft, with σ3 = 0. Variation of
β = 0, 0.5, 1, 1.5, 2 at fixed γ = 0.99 (a) and variation of γ = 0, 0.75, 0.99 at fixed β = 0 (b).

2.3.1 Smoothness of the yield surface

Smoothness of yield surface (2.13) within the interval of material parameters
defined in (2.10)–(2.11) can be proved considering the yield function gradient.
This can be obtained from (2.4) in the form

∂F

∂σ
= a(p)I + b(θ)S̃ + c(θ)S̃

⊥
, (2.14)

where

S̃ =

√
3
2

S

q
, S̃

⊥
= −

√
2
3
q
∂θ

∂σ
=

1
sin 3θ

[√
6
(

S̃
2 − 1

3
I

)
− cos 3θS̃

]
, (2.15)
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and

a(p) =
Mpc

3(pc + c)

(
1 −mΦm−1

)
[2(1 − α)Φ + α] + 2(1 − α) (Φ − Φm)

2
√

(Φ − Φm) [2(1 − α)Φ + α]
,

b(θ) =

√
3
2

1
g(θ)

, (2.16)

c(θ) = −
√

3γ sin 3θ√
2
√

1 − γ2 cos23θ
sin

[
β
π

6
− 1

3
cos−1(γ cos 3θ)

]
.

It should be noted that c(0) = c(π/3) = 0 and that S̃ and S̃
⊥

are unit norm,
coaxial and normal to each other tensors.4 Coaxiality and orthogonality are
immediate properties, whereas the proof that |S̃⊥| = 1 is facilitated when the
following identities are taken into account

S̃
3 − 1

2
S̃ − cos 3θ

3
√

6
I = 0, � S̃

2 · S̃
2

=
1
2
, (2.17)

the former of which is the Cayley-Hamilton theorem written for S̃. Let us
consider now from (2.14) the unit-norm yield function gradient

Q =
a√

3a2 + b2 + c2
I +

b√
3a2 + b2 + c2

S̃ +
c√

3a2 + b2 + c2
S̃

⊥
, (2.18)

defining, for stress states satisfying F (σ) = 0, the unit normal to the yield
surface. The following limits can be easily calculated

lim
Φ→0+

Q =
1√
3
I, lim

Φ→1−
Q = − 1√

3
I, (2.19)

so that the yield surface results to be smooth at the limit points where the
hydrostatic axis is met. Moreover, smoothness of the deviatoric section of the
yield surface is proved observing that

lim
θ→0,π/3

Q =
a√

3a2 + b2
I +

b√
3a2 + b2

S̃, (2.20)

where S̃ and b are evaluated at θ = 0 and θ = π/3, and noting that S̃ and S̃
⊥

are coaxial, deviatoric tensors so that they are represented by two orthogonal

4Note that cS̃
⊥

= 0 at θ = 0, π/3. This can be deduced from the fact that |S̃⊥| = 1 and
c = 0 for θ = 0, π/3 or, alternatively, can be proved directly observing that for θ = 0, π/3 the
deviatoric stress can be generically written as {S1,−S1/2,−S1/2}, unless all (uninfluent)
permutations of components.
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vectors in the deviatoric plane in the Haigh-Westergaard stress space. We
observe, finally, that limits (2.19) do not hold true when α equals 0 and 2
and that limits (2.20) does not hold true when γ = 1. In particular, a corner
appears at the intersection of the yield surface with the hydrostatic axis in the
former case and the deviatoric section becomes piecewise linear in the latter.

2.3.2 Reduction of yield criterion to known cases

The yield function (2.6)–(2.9) reduces to almost all5 ‘classical’ criteria of yield-
ing. These can be obtained as limit cases in the way illustrated in Tab. 2.1
where the modified Tresca criterion was introduced by Drucker (1953), whereas
the Haigh-Westergaard representation of the Coulomb-Mohr criterion was pro-
posed by Shield (1955). In Tab. 2.1 parameter r denotes the ratio between
the uniaxial strengths in compression (taken positive) and tension, indicated
by fc and ft, respectively. We note that for real materials r ≥ 1 and that we
did not explicitly consider the special cases of no-tension ft = 0 or granular
ft = fc = 0 materials [which anyway can be easily incorporated as limits of
(2.6)–(2.9)].

We note that the expression of the Tresca criterion which follows from
(2.6)–(2.9) in the limits specified in Tab. 2.1, was provided also by Bardet
(1990) and answers —in a positive way— the question (raised by Salençon,
1974) if a proper6 form of the criterion in terms of stress invariants exist.

The Mohr-Coulomb limit merits a special mention. In fact, if the following
values of the parameters are selected

α = 0, c =
fc

[
cos

(
β π

6 − π
3

)
+ cos β π

6

]
3r cos

(
β π

6 − π
3

)− 3 cos β π
6

,

M =
3
[
r cos

(
β π

6 − π
3

)− cos β π
6

]
√

2(r + 1)
,

(2.21)

5A remarkable exception is the isotropic Hill (1950b) criterion, corresponding to a Tresca
criterion rotated of π/6 in the deviatoric plane.

6The expression

f(σ) = 4J3
2 − 27J2

3 − 36k2J2
2 + 96k4J2 − 64k6,

where k is the yield stress under shear (i.e. k = ft/2), reported in several textbooks on
plasticity, is definitively wrong. This can be easily verified taking a stress state belonging to
one of the planes defining the Tresca criterion, but outside the yield locus, for instance, the
point {σ1 = 0, σ2 = −2k, σ3 = 2k}, corresponding to J2 = 4k2 and J3 = 0. Obviously, the
point lies well outside the yield locus, but satisfies f(σ) = 0, when the above, wrong, yield
function is used.
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Table 2.1: Yield criteria obtained as special cases of (2.6)–(2.9), r = fc/ft and fc and ft

are the uniaxial strengths in compression and tension, respectively.

Criterion Meridian function f(p) Deviatoric function g(θ)

von Mises

α = 1, m = 2,

M =
2ft

pc
, c = pc −→ ∞ β = 1, γ = 0

Drucker-Prager
α = 0, M =

3(r − 1)√
2(r + 1)

,

c =
2fc

3(r − 1)
, pc = fcm −→ ∞

as for von Mises

Tresca

as for von Mises, except that

M =

√
3ft

pc

β = 1, γ −→ 1

mod. Tresca

as for Drucker-Prager, except that

M =
3
√

3(r − 1)

2
√

2(r + 1)

as for Tresca

Coulomb-Mohr

as for Drucker-Prager, except that

M =
3
[
r cos

(
β π

6
− π

3

)− cos β π
6

]
√

2(r + 1)

c =
fc

[
cos

(
β π

6
− π

3

)
+ cos β π

6

]
3r cos

(
β π

6
− π

3

)− 3 cosβ π
6

β =
6

π
tan−1

√
3

2r + 1
,

γ −→ 1

mod. Cam-clay m = 2, α = 1, c = 0 as for von Mises

and then the limits
γ −→ 1, pc = fcm −→ ∞, (2.22)

are performed, a three-parameters generalization of Coulomb-Mohr criterion
is obtained, which reduces to the latter criterion in the special case when β
is selected in the form specified in Tab. 2.1 (yielding an expression noted also
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by Chen and Saleeb, 1982).
The cases reported in Tab. 2.1 refer to situations in which the criterion

(2.6)–(2.9) reduces to known yield criteria both in terms of function f(p) and of
function g(θ). It is however important to mention that the Lode’s dependence
function g(θ) reduces also to well-known cases, but in which the pressure-
sensitivity cannot be described by the meridian function (2.7). These are
reported in Tab. 2.2. It is important to mention that the form of our function
g(θ), eqn. (2.9), was indeed constructed as a generalization of the deviatoric
function introduced by Ottosen (1977).

Table 2.2: Deviatoric yield functions obtained as special cases of (2.9)

Criterion Deviatoric function g(θ)

Lower convexity (Rankine) β = 0, γ −→ 1

Upper convexity β = 2, γ −→ 1

Ottosen β = 0, 0 ≤ γ < 1

2.3.3 A comparison with experiments

A brief comparison with experimental results referred to several materials is
reported below. We limit the presentation to a few representative examples
demonstrating the extreme flexibility of the proposed model to fit experimen-
tal results. In particular, we concentrate on the meridian section, whereas
only few examples are provided for the deviatoric section, which has a shape
so deformable and ranging between well-known forms that fitting experiments
is a-priori expected. Results on the biaxial plane σ1 − σ2 are also included.

Typical of soils are the experimental results reported in Fig. 2.5, on Aio
dry sand and Weald clay, taken, respectively, from Yasufuku et al. (1991, their
Fig. 10a) and Parry (reported by Wood, 1990, their Fig. 7.22, so that pe is the
equivalent consolidation pressure in Fig. 2.5 (b)). Note that the upper plane of
the graphs refers to triaxial compression (θ = π/3), whereas triaxial extension
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Figure 2.5: Comparison with experimental results relative to sand (Yasufuku et al. 1991)
(a) and clay (Parry, reported by Wood, 1990) (b).

is reported in the lower part of the graphs (θ = 0). It may be concluded from
the figure that experimental results can be easily fitted by our function f(p),
still maintaining a smooth intersection of the yield surface with p−axis.

In addition to soils, the proposed function (2.6)–(2.9) can model yielding of
porous ductile or cellular materials, metallic and composite powders, concrete
and rocks. To further develop this point, a comparison with experimental
results given by Sridhar and Fleck (2000) —their Figs. 5(b) and 9(c)— relative
to ductile powders is reported in Fig. 2.6. In particular, Fig. 2.6 (a) is relative
to an aluminum powder (Al D0 = 0.67, D = 0.81 in Sridhar and Fleck, their
Fig. 5b), Fig. 2.6 (b) to an aluminum powder reinforced by 40 vol.%SiC (Al-
40%Sic D0 = 0.66, D = 0.82 in Sridhar and Fleck, their Fig. 5b), Fig. 2.6 (c)
to a lead powder (0% steel in Sridhar and Fleck, their Fig. 9c), and Fig. 2.6 (d)
to a lead shot-steel composite powder (20% steel in Sridhar and Fleck, their
Fig. 9c). Beside the fairly good agreement between experiments and proposed
yield function, we note that the aluminium powder has a behaviour —different
from soils and lead-based powders— resulting in a meridian section of the
yield surface similar to the early version of the Cam-clay model (Roscoe and
Schofield, 1963).

Regarding concrete, among the many experimental results currently avail-
able, we have referred to Sfer et al. (2002, their Fig. 6) and to the Newman
and Newman (1971) empirical relationship

σ1

fc
= 1 + 3.7

(
σ3

fc

)0.86

, (2.23)

where σ1 and σ3 are the maximum and minimum principal stresses at failure
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Figure 2.6: Comparison with experimental results relative to aluminium powder (a) alu-
minum composite powder (b), lead powder (c) and lead shot-steel composite powder(d),
data taken from Sridhar and Fleck (2000).

and fc is the value of the ultimate uniaxial compressive strength. Small circles
in Fig. 2.7 represents results obtained using relationship (2.23) in figure (a)
and experimental results by Sfer et al. (2002) in figure (b); the approximation
provided by the criterion (2.7)–(2.9) is also reported as a continuous line.
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Figure 2.7: Comparison with the experimental relation (2.23) proposed by Newman and
Newman (1971) (a) and with results by Sfer et al. (2002) (b).



2.3. A new yield function 29

As far as rocks are concerned, we limit to a few examples. However, we
believe that due to the fact that our criterion approaches Coulomb-Mohr, it
should be particularly suited for these materials. In particular, data taken
from Hoek and Brown (1980, their pages 143 and 144) are reported in Fig. 2.8
as small circles for two rocks, chert (Fig. 2.8 a) and dolomite (Fig. 2.8 b).

p / fC

q
/
f C

p / fC

q
/
f C

(a) (b)

0.5 1 1.5 2

0.5

1

1.5

2

2.5

3

3.5

4

0.5 1 1.5 2

0.5

1

1.5

2

2.5

3

3.5

4

� ��	= � ��	=

Figure 2.8: Comparison with experiments for rocks. Chert (a) and dolomite (b), data
taken from Hoek and Brown (1980).

A few data on polymers are reported in Fig. 2.9 —together with the fitting
provided by our model— concerning polymethil methacrylate (Fig. 2.9 a) and
an epoxy binder (Fig. 2.9 b), taken from Ol’khovik (1983, their Fig. 5), see
also Altenbach and Tushtev (2001, their Figs. 2 and 3).
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Figure 2.9: Comparison with experimental results for polymers. Methacrylate (a) and an
epoxy binder (b), data taken from Ol’khovik (1983).
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Finally, our model describes —with a different yield function— the same
yield surface proposed by Deshpande and Fleck (2000) to describe the be-
haviour of metallic foams. In particular, the correspondence between parame-
ters of our model (2.6)–(2.9) and of the yield surface proposed by Deshpande
and Fleck [2000, their eqns. (2)–(3)] is obtained setting

β = 1, γ = 0, m = 2, α = 1,

and assuming the correlations given in Tab. 2.3.

Table 2.3: Correspondence between parameters of (2.6)–(2.9) and Deshpande and Fleck
(2002) yield functions —the latter shortened as ‘DF model’— to describe the behaviour of
metallic foams.

Model (2.6)–(2.9) DF model
M c pc Y α

DF model
Y, α

2α
Y

α

√
1 +

(α
3

)2 Y

α

√
1 +

(α
3

)2

— —

Model
(2.6)–(2.9)
M,pc, c

— — — cM

2
√

1 +
(

M
6

)2 M

2

The proposed function (2.6)–(2.9) is also expected to model correctly
yielding of porous ductile metals. As a demonstration of this, we present
in Fig. 2.10 a comparison with the Gurson (1977) model. The Gurson yield
function has a circular deviatoric section so that β = 1 and γ = 0 in our
model, in addition, we select

α = 1, m = 2,

pc = c = σM
2

3q2
cosh−1 1 + q3f

2

2fq1
,

M = σM
2
pc

√
1 + q3f2 − 2fq1,

(2.24)
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Figure 2.10: Comparison with the Gurson model at different values of void volume fraction
f.

where f is the void volume fraction (taking the values {0.01, 0.1, 0.3, 0.6 } in
Fig. 2.10), σM is the equivalent flow stress in the matrix material and q1 = 1.5,
q2 = 1 and q3 = q21 are the parameters introduced by Tvergaard (1981, 1982).
A good agreement between the two models can be appreciated from Fig. 2.10,
increasing when the void volume fraction f increases.

As far as the deviatoric section is regarded, we limit to two examples
—reported in Fig. 2.11— concerning sandstone and dense sand, where the
experimental data have been taken from Lade (1997, their Figs. 2 and 9a).
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Figure 2.11: Comparison with experimental results relative to deviatoric section for sand-
stone (a) and dense sand (b) data taken from (Lade, 1997).

Experimental data referred to the biaxial plane σ3 = 0 for grey cast iron
and concrete (taken respectively from Coffin and Schenectady, 1950, their
Fig. 5 and Tasuji et al. 1978, their Figs. 1 and 2) are reported in Fig. 2.12.
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Figure 2.12: Comparison with experimental results on biaxial plane for cast iron (data
taken from Coffin and Schenectady, 1950) (a) and concrete (data taken from Tasuji et al.
1978) (b).

2.4 On convexity of yield function and yield surface

Convexity of the yield function (2.6)–(2.9) within the range of parameters
(2.10)–(2.11) was simply stated in the previous Section and still needs a proof.
This will be given at the end of the present Section as an application of a
general proposition relating convexity of yield functions and surfaces that is
given below.

We begin noting that while convexity of the yield function implies convex-
ity of the corresponding yield surface, the converse is usually false, namely,
convexity of a level set of a function is unrelated to convexity of the function
itself. As an example, let us consider the non-convex yield function

f(p, q) =
p4

a4
− p2

a2
+
q2

b2
, 0 ≤ p

a
≤ 1, (2.25)

(where a and b are material parameters having the dimension of stress) which
corresponds to a convex yield surface f(p, q) = 0, Fig. 2.13. After the pioneer-
ing work of de Finetti (1949), it became clear that convexity of every level
set of a function represents its quasi-convexity, a property defining a class of
functions much broader than the class of convex functions. In more detail,
let us consider a function f(x) : U −→ R, with U being a convex set, and its
level sets

Lα = {x ∈ U | f(x) ≤ α}, (2.26)

so that:

f is quasi-convex if the level sets Lα are convex for every α ∈ R.
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Figure 2.13: Level sets of function (2.25).

Now, the above definition of quasi-convexity is equivalent (Roberts and Var-
berg, 1973) to the definition

f [λx + (1 + λ)y] ≤ max {f(x), f(y)}, ∀x,y ∈ U, ∀λ ∈ [0, 1], (2.27)

and, if f is continuous and differentiable, to

f(y) ≤ f(x) ⇒ ∇f(x) · (x − y) ≥ 0, ∀x,y ∈ U. (2.28)

Convexity of the yield surface can be either accepted on the basis of exper-
imental results, or on some engineering argumentation, such as for instance
Drucker’s postulate. Obviously, a convex yield locus can be expressed as a
level set of a function, that generally may lack convexity and, even, quasi-
convexity. For example, the level sets of function (2.25) are given in Fig. 2.13.

It can be observed that while f(p, q) = 0 may perfectly serve as a (convex)
yield surface, the corresponding yield function even lacks quasi-convexity.7

It is true that, in principle, a convex yield function can always be found to
represent a convex yield surface, but to find this in a reasonably simple form
may be an hard task. In other words, a number of yield functions that were
formulated as an interpolation of experimental results still need a proof of
convexity, even in cases where the corresponding yield locus is convex. The
propositions that will be given below set some basis to provide these proofs.

7As noted by Franchi et al. (1990), definition (2.28) is very similar to Drucker’s postulate.
However, Drucker’s postulate merely prescribes the so-called normality rule of plastic flow
and convexity of yield surface (Drucker, 1956, 1964). Quasi-convexity becomes a consequence
of Drucker’s postulate only in the special case —considered by Franchi et al. (1990)— in
which convexity of yield surface implies convexity of all level sets of the corresponding
function.
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2.4.1 A general result for a class of yield functions

The yield function (2.6)–(2.9) presented in the previous section may be viewed
as an element of a family of models specified by the generic form (2.6). This
family includes, among others, the models by Gudheus (1973), Argyris et al.
(1974), Willam and Warnke (1975), Eekelen (1980), Lin and Bazant (1986),
Bardet (1990), Ehlers (1995), and Menétrey and Willam (1995) and Chris-
tensen (1997) and Christensen et al. (2002).

A general result is provided below showing that for the range of material
parameters for which the Haigh-Westergaard representation of a yield surface
(2.13) is convex, the function is also convex.

Proposition 1: Convexity of the yield function (2.6) is equivalent to convexity
of the meridian and deviatoric sections of the corresponding yield surface
(2.13) in the Haigh-Westergaard representation. In symbols:

convexity of F (σ) = f(p)+
q

g(θ)
⇐⇒ f ′′ ≥ 0, & g2+2g′ 2−gg′′ ≥ 0, (2.29)

where g(θ) is a positive function.

Proof. It is a well-known theorem of convex analysis (Ekeland and Temam,
1976) that the sum of two convex functions is also a convex function. Since
q, p and θ are independent parameters, failure of convexity of f(p) or q/g(θ)
implies failure of convexity of F (σ) and therefore convexity of both f(p) and
q/g(θ) are necessary and sufficient conditions for convexity of F (σ).

Now, let us first analyze f(p). The fact that convexity of f(p) as a function
of σ is equivalent to convexity of the meridian section follows from linearity
of the trace operator, in view of the fact that p = −trσ/3.

Second, the fact that convexity of q/g(θ) as function of σ is equivalent
to the convexity of the deviatoric section follows from the 3 lemmas listed
below. �

Lemma 1 (Hill, 1968): Convexity of an isotropic function of a symmetric
(stress) tensor σ is equivalent to convexity of the corresponding function of
the principal (stress) values σi (i = 1, 2, 3). In symbols, given:

φ(σ) = φ̃(σ1, σ2, σ3), (2.30)

then:

∆
∂φ

∂σ
· ∆σ ≥ 0 ⇐⇒

3∑
i=1

∆
∂φ̃

∂σi
∆σi ≥ 0, (2.31)
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where ∆ denotes an ordered difference in the variables, so that, denoting with
A and B two points in the tensor space

∆
∂φ

∂σ
· ∆σ =

(
∂φ

∂σ

∣∣∣∣
σA

− ∂φ

∂σ

∣∣∣∣
σB

)
· (σA − σB), (2.32)

∆
∂φ̃

∂σi
∆σi =


 ∂φ̃

∂σi

∣∣∣∣∣
{σA

1 , σA
2 , σA

3 }
− ∂φ̃

∂σi

∣∣∣∣∣
{σB

1 , σB
2 , σB

3 }


 (σA

i − σB
i ). (2.33)

Proof. That convexity of φ implies convexity of φ̃ is self-evident. The
converse is not trivial and a proof was given by Hill (1968) with reference to
an elastic strain energy function. The proof, omitted here for brevity, was
later obtained also by Yang (1980) with explicit reference to a yield function.
�

Lemma 2: Given a generic isotropic function φ of the stress that can be
expressed as

φ(σ1, σ2, σ3) = φ̃(S1, S2), (2.34)

where S1 and S2 are two of the principal components of deviatoric stress, i.e.

S1 =
1
3

(2σ1 − σ2 − σ3) , S2 =
1
3

(−σ1 + 2σ2 − σ3) , (2.35)

convexity of φ(σ1, σ2, σ3) is equivalent to convexity of φ̃(S1, S2).

Proof. The proof follows immediately from the observation that the rela-
tion (2.35) between {S1, S2} and {σ1, σ2, σ3} is linear. �

Lemma 3: Convexity of
q

g(θ)
(2.36)

as a function of S1, S2 is equivalent to the convexity of the deviatoric section
in the Haigh-Westergaard space:

g2 + 2g′ 2 − gg′′ ≥ 0. (2.37)
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Proof. The Hessian of (2.36) is

∂2q/g(θ)
∂Si∂Sj

=
1
g3

[
g2 ∂2q

∂Si∂Sj
+ q(2g′ 2 − gg′′)

∂θ

∂Si

∂θ

∂Sj

− gg′
(
∂q

∂Si

∂θ

∂Sj
+

∂q

∂Sj

∂θ

∂Si
+ q

∂2θ

∂Si∂Sj

)]
,

(2.38)

where i and j range between 1 and 2 and all functions q and θ are to be
understood as functions of S1 and S2 only. Derivatives of q may be easily
calculated to be

∂q

∂Si
= 2Si − (−1)imi,

∂2q

∂Si∂Sj
=

27
4q3

mimj, (2.39)

where indices are not summed and vector m has the components

{m} = {S2,−S1}. (2.40)

The derivatives of θ can be performed through cos 3θ, eqn. (2.3)1, noting that

∂θ

∂Si
=

−1
3 sin 3θ

∂ cos 3θ
∂Si

,

∂2θ

∂Si∂Sj
=

−1
3 sin 3θ

(
cos 3θ
sin23θ

∂ cos 3θ
∂Si

∂ cos 3θ
∂Sj

+
∂2cos 3θ
∂Si∂Sj

)
,

(2.41)

so that

∂q

∂Si

∂θ

∂Sj
+

∂q

∂Sj

∂θ

∂Si
+ q

∂2θ

∂Si∂Sj
=

−1
sin 3θ

[
∂2q cos 3θ
∂Si∂Sj

− cos 3θ
∂2q

∂Si∂Sj
+ q

cos 3θ
sin23θ

∂ cos 3θ
∂Si

∂ cos 3θ
∂Sj

]
,

(2.42)

where

∂ cos 3θ
∂Si

=
9
√

3 sin 3θ
2q2

mi,
∂2q cos 3θ
∂Si∂Sj

= −272J3

q6
mimj . (2.43)

A substitution of (2.43) into (2.42) yields

∂q

∂Si

∂θ

∂Sj
+

∂q

∂Sj

∂θ

∂Si
+ q

∂2θ

∂Si∂Sj
= 0, (2.44)
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so that we may conclude that the Hessian (2.38) can be written as

∂2q/g(θ)
∂Si∂Sj

=
27
4

(
g2 + 2g′ 2 − gg′′

)
q3g3

mimj. (2.45)

Positive semi-definiteness of the Hessian (2.45) is condition (2.37), which, in
turn, represents non-negativeness of the curvature (and thus convexity) of
deviatoric section. �

2.4.2 Applications of Proposition 1

The scope of this section is on one hand to prove the convexity of function
(2.6)–(2.9) within the range (2.10)–(2.11) of material parameters, on the other
hand to show that Proposition 1 is constructive, in the sense that can be used
to invent convex yield functions. Let us begin with the first issue.

The proposed yield function (2.6)–(2.9)

First, we show that f(p), eqn. (2.6), is a convex function of p (so that the
meridian section is convex) and, second, that the deviatioric section described
by g(θ), eqn. (2.9), is convex for the range of material parameters listed in
(2.10)–(2.11). Therefore, as a conclusion from Proposition 1, function F (σ)
results to be convex.

A well-known result of convex analysis (Ekeland and Temam, 1976) states
that function f(p) is convex if and only if the restriction to its effective domain
(i.e. Φ ∈ [0, 1]) is convex. Moreover, the function Φ appearing in (2.8) is a
linear function of p so that convexity of f(p) can be inferred from convexity
of the corresponding function, say f̃ , of Φ. Introducing for simplicity the
function

h(Φ) = (Φ − Φm) [2(1 − α)Φ + α] , (2.46)

the convexity of function f̃(Φ) reduces to the condition[
h′(Φ)

]2 − 2h′′(Φ)h(Φ) ≥ 0, (2.47)

where

h′(Φ) =
(
1 −mΦm−1

)
[2(1 − α)Φ + α] + 2(1 − α) (Φ − Φm) ,

h′′(Φ) =
−m(m− 1)Φm−2 [2(1 − α)Φ + α] + 4(1 − α)

(
1 −mΦm−1

)
.

(2.48)
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Fulfillment of eqn (2.47) can be now easily proven considering the inequality

h′′(Φ) ≤ 4(1 − α)
(
1 −mΦm−1

)
, ∀ Φ ∈ [0, 1]. (2.49)

It remains now to show convexity of q/g(θ). To this purpose, Proposition
1 can be employed, through substitution of (2.9) into the convexity condition
eqn. (2.37), thus yielding

1
g(θ)

+
3γ cos3θ√

1 − γ2cos23θ
sin

[
β
π

6
− 1

3
cos−1(γ cos3θ)

]
≥ 0, (2.50)

where θ ∈ [0, π/3] and g(θ) is given by eqn. (2.9). For values of γ belonging
to the interval specified in (2.10)7, condition (2.50) can be transformed into

sin
(
βπ

6
− 4

3
x

)
+ 2 sin

(
βπ

6
+

2
3
x

)
≥ 0, (2.51)

with x ∈ [cos−1γ, π − cos−1γ] and then into

−1 + 2 cosz + 2cos2z

2 sinz(1 − cosz)
sinβ

π

6
+ cosβ

π

6
≥ 0, (2.52)

with z ∈ [2/3 cos−1γ, 2/3(π − cos−1γ)], an inequality that can be shown to
be verified within the interval of β specified in (2.11) and thus also within its
subinterval (2.10)6.

Generating convex yield functions

Proposition 1 can be easily employed to build convex yield functions within
the class described by eqn. (2.6). The simplest possibility is to maintain f(p)
in the form (2.7) and change the deviatoric function eqn. (2.9). As a first
proposal, we can introduce the following function

g(θ) = [1 + β (1 + cos3θ)]−1/n , (2.53)

instead of (2.9). This describes a smooth deviatoric section approaching (with-
out reaching) the triangular (Rankine) shape when parameters n > 0 and
β ≥ 0 are varied. The yield function is convex within the range of parameters
reported in Tab. 2.4. The yield function defined by eqns. (2.7) and (2.53)
does not possess the extreme deformability of (2.7) and (2.9) and does not
admit Mohr-Coulomb and Tresca as limits, but results in a simple expression.
The performance of the deviatoric shape of the yield surface is analyzed in



2.4. On convexity of yield function and yield surface 39

Table 2.4: Conditions for the convexity of deviatoric yield function (2.53).

0 < n ≤ 11/3 n ≥ 11/3

β ≤ n

9 − 2n
β ≤

(
−1 +

√
1 +

9(n− 2)2

n2(4n − 13)

)−1

0

��2 n=1

5
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Figure 2.14: Deviatoric section (2.53): effects related to the variation of β (a) and n (b).

Fig. 2.14, where the solid lines correspond to the limit of convexity, β = 1
and n = 3. The curves reported in Fig. 2.14 (a) are relative to the values of
β = 0, 1, 2, whereas for Fig. 2.14 (b) n takes the values {1, 3, 5}.

A limitation of the yield surface described by eqns. (2.7) and (2.53) is that
the deviatoric section cannot be stretched until the Rankine limit. This can
be easily emended assuming for g(θ) our expression (2.9) or that proposed by
Willam and Warnke (1975) (see also Menétrey and Willam, 1995)

g(θ) =
2(1 − e2) cos θ + (2e− 1)

[
4(1 − e2) cos2θ + 5e2 − 4e

]0.5

4(1 − e2) cos2θ + (2e − 1)2
, (2.54)

where e ∈]0.5, 1] is a material parameter, yielding in the limit e −→ 0.5 the
Rankine criterion and the von Mises criterion when e = 1.

It is already known that the deviatoric section of the yield surface corre-
sponding to eqn. (2.54) remains convex for any value of the parameter e rang-
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ing within the interval ]0.5, 1], so that —from Proposition 1— the function
(2.6) equipped with the definition (2.54) of the function g(θ) is also convex.

As a final example, we can employ function g(θ) defined by the expression
proposed by Gudheus (1973) and Argyris et al. (1974)

g(θ) =
2k

1 + k + (1 − k) cos 3θ
, (2.55)

where k ∈]0.777, 1] is a material parameter.
Otherwise, we can act on the meridian function. For instance, we can

modify a Drucker-Prager criterion —which again fits in the framework de-
scribed by eqn. (2.6)— obtaining a non-circular deviatoric section described
by eqn. (2.9)

F (σ) = −Γ (p+ c) + q cos
[
β
π

6
− 1

3
cos−1 (γ cos 3θ)

]
, (2.56)

where c is the yield strength under isotropic tension and Γ is a material pa-
rameter, or by eqn. (2.53)

F (σ) = −Γ (p+ c) + q[1 + β(1 + cos 3θ)]1/n, (2.57)

or by the Gudheus/Argyris condition (2.55)

F (σ) = −Γ (p+ c) +
q

2k
[1 + k + (1 − k) cos 3θ] . (2.58)

It may be noted that the yield criterion (2.58) has been employed by Laroussi
et al. (2002) to describe the behaviour of foams. In all the above cases,
Proposition 1 ensures that for the range of parameters in which the Haigh-
Westergaard representation of the yield surface is convex, the yield function
is also convex.

2.4.3 A note on the behaviour of concrete and a generalization of
Proposition 1

In the modelling of concrete there is some experimental evidence that the
deviatoric section starts close to the Rankine limit for low hydrostatic stress
component and tends to approach a circle, when confinement increases. This
effect has been described by Ottosen (1977) through a model which does not
fit the general framework specified by eqn. (2.6) and can be written in our
notation in the form

F (σ) = Aq2 +B
q

g(θ)
+ C − p, (2.59)
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where A > 0, B ≥ 0 and C ≤ 0 are constants and g(θ) is in the form (2.9)
with β = 0. The criterion is therefore defined by four parameters.

The above-expression (2.59) of the yield function suggests the following
generalization of Proposition 1:

Proposition 2: Convexity of the yield function

F (σ) = Aq2 +B
q

g(θ)
+ f(p), (2.60)

where A and B are positive constants, is equivalent to

f ′′ ≥ 0, & g2 + 2g′ 2 − gg′′ ≥ 0, (2.61)

which in turn is equivalent to the convexity of the surface

B
q

g(θ)
+ f(p) = 0, (2.62)

in the Haigh-Westergaard stress space.
Proof. Let us begin assuming that (2.61) holds true. In this condition

Proposition 1 ensures that f(p) and q/g(θ) are convex functions of σ, so that
(2.60) results the sum of three convex functions and its convexity follows. Vice-
versa, failure of convexity of f(p) immediately implies failure of convexity of
(2.60) since p is independent of θ and q. Finally, let us assume that condition
(2.61)2 is violated, for a certain value, say θ̃, of θ. The Hessian of

Aq2 +Bq/g(θ), (2.63)

as a function of two components of deviatoric stress S1 and S2, is given by
eqn. (2.45) summed to a constant and positive definite matrix

3A


 2 1

1 2


+B

27
4

(
g2 + 2g′ 2 − gg′′

)
q3g3


 S2

2 −S1S2

−S1S2 S2
1


 . (2.64)

Considering now the Haigh-Westergaard representation, it is easy to under-
stand that we can keep θ = θ̃ fixed and change S1 and consequently S2 so that
S1/S2 remains constant. In this situation, while g and its derivatives remain
fixed, the quantity

S2
1

q3
, (2.65)
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in matrix (2.64) tends to +∞ when S1 tends to zero. Therefore, violation of
(2.61)2 cannot be compensated by a constant term and function (2.60) is not
convex. �

Proposition 2 provides the conditions for convexity of the Ottosen crite-
rion. Moreover, the same proposition allows us to generalize our yield function
(2.6)–(2.9) adding a q2 term as in the Ottosen criterion. This leads immedi-
ately to

F (σ) = Aq2 +Bq cos
[
β
π

6
− 1

3
cos−1 (γ cos 3θ)

]
+ f(p), (2.66)

where f(p) is given by eqn (2.7).



Chapter 3

Elastoplastic coupling in a small strain formulation

3.1 Introduction

A model capable of describing cold forming of ceramic powders is presented
here. The main feature is that it describes gain in cohesion and related varia-
tions of yield surface shape and of elastic properties, the latter employing the
concept of elastoplastic coupling.

The peculiar mechanism of variation in cohesion due to plastic deformation
can be described making recourse to the concept of hardening. We remind
that the compaction of a ceramic powder is a process essentially consisting of
the following three phases: (I) granule sliding and rearrangement, (II) granule
deformation, (III) granule densification. Let us assume that a yield function
exists for a granular material, defining its elastic range, so that when the
material is in the initial cohesionless state, the null stress state lies on the
yield surface, Fig. 3.1. Now, if the material is subject to increasing hydrostatic

p

q

pc0 pcb pc

c

yield locus at
breakpoint pressure

current
yield locus

initial
yield locus

hardening
process

increase
in cohesion
when >p pc cb

Figure 3.1: Increase in cohesion and hardening.

43
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compression, after an initial (small) deformation in the elastic range, an early
development of plastic deformation occurs from a virgin state, corresponding
to Phase (I) compaction. In this phase, the increase in cohesion is limited and
almost negligible. However, when the pressure reaches the breakpoint value,
so that material enters Phase (II), the gain in cohesion becomes crucially
important. In order to describe this process, we may employ a hardening
law of the type sketched in Fig. 3.1, where the yield surface shape distortion
changes qualitatively, when the applied pressure p exceeds the breakpoint
pressure pcb.1

At this point, one can get the impression that a model for the mechanism
of increase in cohesion during densification of granular materials could be not
particularly complicated and that this could be pursued just employing an
appropriate hardening rule. The delicate point is however that the elastic
range of granular materials cannot be properly described by linear elasticity,
at least during Phase (I) of densification. It is a well-established concept in
fact that the elastic law relating the volumetric deformation to the applied
mean pressure is logarithmic, as sketched in Fig. 3.2. Since, for a cohesionless

log (pressure)
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ri

c
st

ra
in

�
1

Figure 3.2: Logarithmic elastic law.

material the logarithmic law is simply not defined for null pressures, increasing
the cohesion of the material implies a modification to the elastic law dependent
on the plastic deformation, which is the driving mechanism for densification.
This means that the elastic properties of the material must depend on the
plastic deformation, a feature that can be described making recourse to the

1The type of increase in cohesion could also qualitatively change after the Phase (III) of
densification is entered, but since we do not possess enough experimental data relative to
this behaviour (occurring however at very high pressures, higher than those involved in the
usual forming of ceramics), this is not accounted for in the modelling. We believe anyway
that its consideration would be not difficult, once experimental results were made available.
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concept of elastoplastic coupling (Hueckel, 1976; Dougill, 1976).
In the following, we will introduce the three fundamental ingredients in

the modelling of the densification processes, namely, (i) the yield function
appropriate for the description of the behaviour of granular materials, (ii) the
nonlinear elastic model, coupled to plasticity, (iii) the hardening law.

3.2 The constitutive model

3.2.1 The yield function

The yield function was introduced in Chapter 2 and is thought to be suitable
for describing a broad class of materials, particularly granular media. We
recall here its expression, namely

F (σ, pc, c) = f(p, pc, c) +
q

g(θ)
, (3.1)

where pc and c are the parameters governing hardening, q is the deviatoric
invariant, f(p) is the function describing the dependence on the mean pressure
p, assumed in the form

f(p, pc, c) =

{ −Mpc

√
(Φ − Φm) [2(1 − α)Φ + α] if Φ ∈ [0, 1],

+∞ if Φ /∈ [0, 1],
(3.2)

in which

Φ =
p+ c

pc + c
, (3.3)

and g(θ) describes dependence on the Lode’s invariant θ

g(θ) =
1

cos
[
β
π

6
− 1

3
cos−1 (γ cos 3θ)

] . (3.4)

The yield function described by eqn. (3.1)-(3.4) has been motivated and
explained in great detail in Chapter 2. We mention here that the yield surface
corresponding to eqns. (3.1)-(3.4) is extremely versatile and remains convex
for a broad variation of parameters M , pc, c, m, α, β, γ.
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3.2.2 Elastoplastic coupling

Dependence of elastic properties of a material on plastic deformation for
describing degradation of elastic properties was suggested independently by
Hueckel (1976) for soils and Dougill (1976) for concrete. The model was then
developed by Hueckel and Maier (1977), Capurso (1979), Maier and Hueckel
(1979), and Bigoni and Hueckel (1991). The idea of coupling is implicitely in-
cluded in the general treatment by Hill and Rice (1973) (see also Hill, 1978),
resumed and slightly generalized by Bigoni (2000). It is important to mention
that we will develop the concept of elastoplastic coupling in the way suggested
by Bigoni (2000), which —differently from the approach pursued by Hueckel
and Dougill— yields a symmetric constitutive operator in the specific case of
associative flow rule. This fact follows from different constitutive assumptions,
in particular, it will be assumed here as in (Bigoni, 2000; Gajo et al., 2004)
that the flow rule sets the so-called ‘irreversible’ strain rate, which in the case
of coupling is different from the plastic strain rate.

The necessity of elastoplastic coupling to model the densification pro-
cess of granular materials considered here may be motivated —as sketched
in Fig. 3.3— by the observation that elastic unloading in a uniaxial defor-
mation test shows a tendency toward a stiffening caused by the increase in
cohesion. However, even if this effect would be disregarded in a first approxia-

1 2 3 4 5

Displacement, mm

10

20

30

40

50

60

70

80

L
o
a
d
,

k
N

elastic stiffening

Figure 3.3: Elastic stiffening during uniaxial deformation test (experimental results on
alumina powder).

tion, elastoplastic coupling would always be needed, for the reason mentioned
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at the beginning of this Chapter, namely, to match the increase in cohesion
with the nonlinear elastic model usually accepted for granular materials.

The basic concept of the elastoplastic coupling is that the elastic potential
φ depends, in addition to the elastic, also on the plastic strain, so that

σ =
∂φ (εe, εp)

∂εe
, (3.5)

where εe and εp are the elastic and plastic components of deformation, re-
spectively.

In the elastic range, granular cohesionless material obey the well-known
logarithmic law, relating the increment in the void ratio ∆e = e−e0 (measured
with respect to an initial value e0) to the current mean pressure p = −trσ/3

∆ee = −κ log
p

p0
, (3.6)

where the suffix e remaks that we are referring to the elastic range, p0 is the
value of p corresponding to the initial void ratio e0, and κ is the logarithmic
bulk modulus. Eqn. (3.6) is the starting point to obtain the nonlinear elas-
tic potential employed in the Cam-clay model (Roscoe and Schofield, 1963;
Roscoe and Burland, 1968), which is particularly suitable for the description
of cohesionless granular media. However, our intention here is to describe the
behaviour of materials which may increase (or decrease) cohesion as a function
of the plastic deformation. Therefore, we have to introduce a modification in
the elastic Cam-clay potential, first, to include a cohesion and, second, to
make this dependent on plastic deformation. The easiest way to do this is
to introduce a plastic-dependent cohesion in eqn. (3.6), playing the role of a
modification to the mean pressure

∆ee = −κ log
p+ c (εp)
p0 + c (εp)

, (3.7)

where c (εp) is the (positive) parameter describing the cohesion and depending
on plastic deformation. In particular, the cohesion is assumed to depend on
the volumetric component only of plastic deformation. This may be motivated
by micromechanical considerations following, for instance, the Rowe (1962)
model of a granular material, in which a shear deformation yields a loss (gain)
in cohesion when accompanied by dilatancy (contractivity), Fig. 3.4.

We are in a position now to proceed with eqn. (3.7) in the standard
way as usually done in the case of eqn. (3.6). Assuming incompressibility
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dilatancy = loss of cohesion
contraction = gain in cohesion

Figure 3.4: The mechanism of gain and loss of cohesion visualized in terms of the Rowe
model.

of grains, the volumetric elastic deformation is given by (e − e0)/(1 + e0), so
that eqn. (3.6) defines a volumetric nonlinear elastic law, to be added to a
linear elastic deviatoric constitutive equation. The resulting elastic potential
is therefore

φ(εe, εp) = −µ
3
(tr εe)2 + c tr εe + κ̃(p0 + c) exp

(
−tr εe

κ̃

)
+ µ εe · εe, (3.8)

where µ is the elastic shear modulus and κ̃ = κ/(1 + e0). This elastic po-
tential is suitable to describe the behaviour of the material in the first stage
of the compaction process, as long as the material is still granular and the
void ratio is high, but becomes unrealistic for the second stage, in which the
material gains cohesion and can be regarded as a porous solid. Moreover,
as the porosity decreases, the volumetric elastic behaviour changes from the
nonlinear logaritmic law (3.7) to the simpler linear one. In order to describe
this transition in the material behaviour, we modifiy the elastic potential as
follows

φ(εe, εp) = −µ
3
(tr εe)2 + c tr εe (3.9)

+ (p0 + c)
[(
d− 1

d

)
(tr εe)2

2κ̃
+ d1/nκ̃ exp

(
− tr εe

d1/nκ̃

)]
+ µ εe · εe,

where d is a parameter depending on the plastic volumetric strain and gov-
erning the transition and n is a material constant defining the decay of the
exponential term. Moreover we make the elastic shear modulus µ depen-
dent on the volumetric plastic strain. In conclusion, the nonlinear elastic
stress/strain law may be obtained from eqn. (3.9) and results dependent on
the plastic strain through c, d, and µ (the dependence is not made explicit for
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conciseness)

σ =
{
−2

3
µ tr εe + c (3.10)

+(p0 + c)
[(
d− 1

d

)
tr εe

κ̃
− exp

(
− tr εe

d1/nκ̃

)]}
I + 2µ εe.

Taking the time derivative of (3.10), we get the rate equations

σ̇ = E[ε̇e] + ċ

[
1 +

(
d− 1

d

)
tr εe

κ̃
− exp

(
− tr εe

d1/nκ̃

)]
I

+ ḋ
p0 + c

κ̃
tr εe

[
1 +

1
d2

− 1
nd1+1/n

exp
(
− tr εe

d1/nκ̃

)]
I (3.11)

+ µ̇

(
−2

3
tr εeI + 2εe

)
,

where ċ, ḋ, and µ̇ arise from elastoplastic coupling (ċ = ḋ = µ̇ = 0 in the
usual uncoupled models) and the elastic fourth-order tensor E, together with
its inverse E

−1 (restricted to the space of all symmetric tensors) is given by

E =
[
−2

3
µ+Kt

]
I ⊗ I + 2µI ⊗ I,

E
−1 =

2µ− 3Kt

18µKt
I ⊗ I +

1
2µ

I ⊗ I,

(3.12)

in which the tangent bulk modulus Kt depends on the plastic deformation
through c and d and on the elastic deformation in the way

Kt =
p0 + c

κ̃

[
d− 1

d
+ d−1/nexp

(
− tr εe

d1/nκ̃

)]
. (3.13)

In order to further develop eqn. (3.11), evolution laws for the coupling
parameters c, d, and µ are needed, providing the functional dependences of
c, d, and µ on the plastic deformation. Obviously, a recourse to experimental
evidence is necessary. Concerning the parameter c, experimental results re-
ferred to isotropic compression tests (Reed, 1995) suggest that the cohesion
depends on the difference between the forming pressure pc and the breakpoint
pressure pcb, following the law

c = c∞ [1 − exp (−Γ < pc − pcb >)] , (3.14)
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where the symbol <> denotes the Macaulay brackets operator (defined for
every scalar α as < α >= (α + |α|)/2), c∞ and Γ are two positive mate-
rial parameters, the former defining the limit value of cohesion reached after
substantial plastic deformation, the latter related to the ‘velocity of growth’
of cohesion. With regard to elastic moduli Kt and µ, experimental results
referred to triaxial compression tests (Zeuch et al., 2001) suggest that, when
the material gains cohesion, the dependences of the tangent bulk modulus
and the shear modulus on the forming pressure pc are linear. This may be
accomplished taking d and µ in the forms

d = 1 +B < pc − pcb > and µ = µ0 + c

(
d− 1

d

)
µ1, (3.15)

respectively, where B, µ0, and µ1 are positive material constants, so that the
asimptotic behaviours of Kt and µ as pc → ∞ are

Kt ∼ p0 + c∞
κ̃

Bpc and µ ∼ c∞Bµ1pc, (3.16)

respectively.
On the other hand, the parameter pc is related to the plastic deformation.

The general form of this relationship can be understood making recourse to
a micromechanical model proposed by Cooper and Eaton (1962), which takes
into account the fundamental fact that compaction can be divided into three
phases. Based on statistical micromechanics considerations and validated on
several experimental results on ceramic powders, Cooper and Eaton (1962)
provide a double-exponential law describing the first two phases of densifica-
tion in terms of the relation between the plastic increment of void ratio ∆ep

and the pressure parameter pc,

−∆ep

e0
= a1 exp

(
−Λ1

pc

)
+ a2 exp

(
−Λ2

pc

)
, (3.17)

where a1, a2, Λ1 and Λ2 are material (positive) constants. In particular,
coefficients −e0a1 and −e0a2 denote the increment of void ratio that would
be achieved at infinite pressure by each of the two processes of densification,
so that 0 < a1 + a2 ≤ 1. Coefficients Λ1 and Λ2, which have the dimension
of a pressure, indicate the magnitude of the pressure at which the particular
process of deformation has the maximum probability density.

It may be noted that we restrict the attention to the double-exponential
law (3.17) for simplicity, but there are not difficulties in including a more
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complicated relationship, that —as suggested by Cooper and Eaton— may
include an arbitrary number of exponential and may therefore describe even
the third phase of compaction behaviour.

Since, assuming the grains incompressible, the plastic volumetric deforma-
tion is related to the plastic void ratio increment according to the rule

∆ep = (1 + e0) tr εp, (3.18)

we get from eqn. (3.17)

tr εp = −ã1 exp
(
−Λ1

pc

)
− ã2 exp

(
−Λ2

pc

)
, (3.19)

where ãi = e0ai/(1 + e0), i = 1, 2. Eqn. (3.19) defines an implicit relation
between the plastic deformation and pc, so that we may conclude that, to-
gether with eqns. (3.14)-(3.15), defines the relations between the parameters
c, d, and µ and the volumetric plastic deformation trεp. These relations be-
come explicit when the increments are considered. In particular, the rate of
eqn. (3.19),

ṗc = − p2
c

ã1Λ1 exp
(
−Λ1

pc

)
+ ã2Λ2 exp

(
−Λ2

pc

) tr ε̇p, (3.20)

combined with the rates of eqn. (3.14)-(3.15), gives

ċ = ξ2 tr ε̇p, ḋ = ξ3 tr ε̇p, and µ̇ = ξ4 tr ε̇p, (3.21)

where

ξ2 = − c∞ΓH(pc − pcb) exp [−Γ(pc − pcb)] p2
c

ã1Λ1 exp
(
−Λ1

pc

)
+ ã2Λ2 exp

(
−Λ2

pc

) ,

ξ3 = − BH(pc − pcb) p2
c

ã1Λ1 exp
(
−Λ1

pc

)
+ ã2Λ2 exp

(
−Λ2

pc

) , (3.22)

ξ4 =
(
d− 1

d

)
µ1ξ2 + c

(
1 +

1
d2

)
µ1ξ3,

in which H denotes the Heaviside step function (defined for every scalar α as
H(α) = 1, if α ≥ 0, H(α) = 0 otherwise).
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Using (3.21) into (3.11), we may write

σ̇ = E[ε̇e] + P[ε̇p], (3.23)

where the fourth-order tensor P defines the contribution of the elastoplastic
coupling, in the sense that P = O in the usual, uncoupled plasticity and is
defined as

P = ξ5I ⊗ I + 2ξ4εe ⊗ I, (3.24)

in which

ξ5 = −2
3
ξ4 tr εe + ξ2

[
1 +

(
d− 1

d

)
tr εe

κ̃
− exp

(
− tr εe

d1/nκ̃

)]
(3.25)

+ ξ3
p0 + c

κ̃
tr εe

[
1 +

1
d2

− 1
nd1+1/n

exp
(
− tr εe

d1/nκ̃

)]
.

Introducing now the strain rate additive decomposition

ε̇ = ε̇e + ε̇p, (3.26)

we may transform the rate equation (3.23) into the equivalent form

σ̇ = E[ε̇] − E[ε̇i], (3.27)

where the deformation rate called ‘irreversible’ (in an infinitesimal stress cycle)
has been introduced, defined as

ε̇i = G[ε̇p], (3.28)

in which
G = I ⊗ I − E

−1
P = I ⊗ I + ξ6I ⊗ I + ξ7ε

e ⊗ I, (3.29)

with the inverse
G

−1 = I ⊗ I + ξ8I ⊗ I + ξ9ε
e ⊗ I, (3.30)

where
ξ6 = − ξ5

3Kt
− 2µ− 3Kt

9µKt
ξ4 tr εe, ξ7 = −ξ4

µ
, (3.31)

and
ξ8 = − ξ6

1 + 3ξ6 + ξ7 tr εe
, ξ9 = − ξ7

1 + 3ξ6 + ξ7 tr εe
. (3.32)

It should be noted that tensor G is assumed positive definite, which implies
that

ε̇i · ε̇p > 0, (3.33)
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a condition that we believe it is reasonable to assume (Mróz, 1963, 1966).
The irreversible deformation rate ε̇i defined by eqn. (3.28) is the rate of de-

formation which is not recovered in an infinitesimal stress cycle. This should
not be confused with the plastic deformation rate ε̇p which can be only de-
tected upon unloading at zero stress. This concept is illustrated in Fig. 3.5
with reference to a hypothetical volumetric stress/strain law, where the elas-
tic rate deformation at unloading E

−1[σ̇] is also indicated. Due to the plastic
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Figure 3.5: Irreversible, reversible, plastic, and elastic rate deformations, with reference
to volumetric deformation.

increase in elastic stiffness, we note that (3.11) implies that the elastic rate at
unloading is different for an increment involving plastic deformation.

A crucial point is now the definition of the flow rule, that following Hill
and Rice (1973), Hill (1978) and Bigoni (2000) —and differently from Dougill
(1976), Hueckel (1976), Hueckel and Maier (1977), Maier and Hueckel (1979),
Capurso (1979)— is assumed to govern the irreversible strain rate, instead of
the plastic:

ε̇i = λ̇P . (3.34)

Experimental evidence for granular material referred to classical plasticity
supports the adoption of a deviatoric associative flow rule. For simplicity, we
adopt here also deviatoric associativity, so that tensor P is related to the yield
function gradient Q through the rule

P = Q − ε (1 − Φ) tr Q

3
I, 0 ≤ ε ≤ 1, (3.35)

where ε is a parameter governing the entity of volumetric nonassociativity, so
that ε = 0 gives the associative flow rule.
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The rate constitutive equations can now be obtained via Prager’s consis-
tency, so that Ḟ = 0 during plastic deformation. Imposing this condition
suggests the following definition of hardening modulus

h = − 1
λ̇

(
∂F

∂pc
ṗc +

∂F

∂c
ċ

)
, (3.36)

which is positive in the case of hardening, negative for softening and null for
ideally plastic behaviour. The derivatives of F with respect to the hardening
parameters pc and c appearing in eqn. (3.36) are given by

∂F

∂pc
= −M

√
(Φ − Φm) [2(1 − α)Φ + α] (3.37)

+M
pc(p+ c)
(pc + c)2

(
1 −mΦm−1

)
[2(1 − α)Φ + α] + 2(1 − α) (Φ − Φm)

2
√

(Φ − Φm) [2(1 − α)Φ + α]
,

and

∂F

∂c
= −Mpc(pc − p)

(pc + c)2
· (3.38)

·
(
1 −mΦm−1

)
[2(1 − α)Φ + α] + 2(1 − α) (Φ − Φm)

2
√

(Φ − Φm) [2(1 − α)Φ + α]
.

Employing definition (3.36) into Prager’s consistency yields the elastoplas-
tic rate equations

σ̇ =


 E[ε̇] − 1

H
< Q · E[ε̇] > E[P] if F (σ, pc, c) = 0,

E[ε̇] if F (σ, pc, c) < 0,
(3.39)

where
H = h+ Q · E[P ]. (3.40)

It may be noted that the elastoplastic tangent operator becomes symmetric
in the specific case of the associative flow rule, P = Q.

3.3 Calibration of parameters for densification of a ceramic
powder

Calibration of the model has been performed on the basis of experiments
carried out on alumina powder and available in the literature.
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With regard to the yield surface, parameters m and α, which define the
shape of the meridian section, have been calibrated according to experimental
iso-density data in the (p, q) plane obtained from triaxial compression tests
(Bonnefoy, 2001), assuming that iso-density curves correspond to yield surface
sections (Kim et al., 2000; Kim et al., 2002). The values m = 2 and α = 0.1
give the best fitting as shown in Fig. 3.6, where the data sets correspond to
different levels of densification.
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Figure 3.6: Meridian sections fitted to the iso-density data (Bonnefoy, 2001) for different
levels of densification.

To our knowledge, in the literature there are no experimental data con-
cerning the deviatoric section for alumina powder (and more in general for
ceramic powders), which we could use to calibrate parameters β and γ and
thus define the deviatoric function g(θ). Therefore these parameters have been
calibrated on the basis of the angle of internal friction, φ = 32◦, obtained for
alumina powder from direct shear tests (Piccolroaz et al., 2002; Piccolroaz et
al., 2003).

Making recourse to the Coulomb-Mohr model, the ratio of the deviatoric
section radius for triaxial extension, g(0), to that for triaxial compression,
g(π/3), is related to the angle of internal friction through

g(0)
g(π/3)

=
3 − sinφ
3 + sinφ

. (3.41)
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This is a single equation in two unknowns, β and γ, and is not enough to
determine both of them. So we decided to fix γ = 0.9, which gives a deviatoric
section fairly close to the piecewise linear deviatoric section, corresponding to
γ = 1. This choice makes it easy to fit extremely distorted deviatoric sections
even close to the convexity limits, as we showed in Chapter 2. Using this value
of γ in eqn. (3.41) we get β = 0.19.

Parameter M , which defines the pressure-sensitivity, has been calibrated
making recourse to the concept of critical state, a peculiar state in which the
material deforms at constant stress and constant volume. From eqn. (3.20),
the critical state occurs when trεp = 0, and therefore, from eqns. (3.28)-(3.30),
when trεi = 0, which in turn is equivalent to trQ = 0, as can be proved using
eqns. (3.34) and (3.35). Finally the expression for the yield function gradient
eqn. (2.14)-(2.16) provide the condition for the critical state in the form

2(m+ 1)(1 − α)Φm +mαΦm−1 − 4(1 − α)Φ − α = 0. (3.42)

This implicit relation can be solved numerically, as soon as values for m and
α have been fixed, providing the value of Φ corresponding to the critical state,

Φ� = Φ�(m,α),

in our case Φ� = 0.658. The critical state point in the (p, q) plane is therefore


p� = (pc + c)Φ� − c,

q� = g(θ)Mpc

√
(Φ� − Φ�m) [2(1 − α)Φ� + α],

(3.43)

Eqns. (3.43) define the parametric representation of the critical state line in the
(p, q) plane, with parameter pc. Due to the fact that c is a nonlinear function
of pc, this line is not straight. Indeed the critical state line is straight in the
first phase of densification, as long as c = 0, and then deflects from linearity
in the subsequent phase when the material gains cohesion, approaching, after
substantial plastic deformation and c ∼ c∞, a straight line with the same
slope as the initial line, namely

g(θ)M

√
(Φ� − Φ�m) [2(1 − α)Φ� + α]

Φ�
. (3.44)

However, since c << pc throughout the densification process, we can neglect
the effect of c and take eqn. (3.44) as the slope of the critical state line for
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the whole process. With reference to the triaxial compression state, θ = π/3,
this slope is related to the angle of internal friction through

6 sinφ
3 − sinφ

, (3.45)

which gives a value of M equal to 1.1.
The value of the logarithmic bulk modulus κ, which governs the elastic

behaviour of the material in the first phase of densification, was deduced
from the slope of curves obtained by loading and unloading the samples in
uniaxial strain tests (Piccolroaz et al., 2002; Piccolroaz et al., 2003). For this
evaluation, we have assumed a constant ratio between the horizontal σh and
vertical σv stresses equal to 0.47, as deduced from the formulae

σh

σv
= 1 − sinφ, (3.46)

which is currently used for granular media (Jaky, 1944).
The hardening rule (3.19) is calibrated to describe uniaxial strain exper-

iments (Piccolroaz et al., 2002; Piccolroaz et al., 2003). The values Λ1 =
1.8 MPa, Λ2 = 40 MPa, ã1 = 0.37, ã2 = 0.12 give the excellent interpola-
tion presented in Fig. 3.7, where the volumetric plastic strain trεp is reported
versus the hardening parameter pc.
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Figure 3.7: Fitting of parameter pc.

The hardening law (3.14), representing the variation in cohesion c, as a
function of the hardening parameter pc is plotted in Fig. 3.8, together with the
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Figure 3.8: Fitting of parameter c.

experimental results. These refer to biaxial flexure strength tests on ceramic
tablets produced through uniaxial strain (Piccolroaz et al., 2002; Piccolroaz
et al., 2003). The material parameters Γ = 0.026 MPa−1, c∞ = 2.3 MPa, and
pcb = 3.2 MPa have been used, which provide a fair agreement.

3.4 Numerical simulations

The proposed constitutive model was implemented into the subroutine UMAT
of the commercial finite element code ABAQUS (Hibbitt, Karlsson & Sorensen,
2001). The numerical integration scheme used was the so-called ‘cutting-plane
algorithm’, proposed by Simo and Ortiz (1985), Ortiz and Simo (1986), Simo
and Huges (1987). Numerical simulations were performed to simulate form-
ing of the (axisymmetric) piece shown in Figs. 3.9 and 3.10. Four pieces
were formed at a final mean pressure of 100 MPa starting from 5 g of pow-
der. The axisymmetric mesh used in the simulations is shown in Fig. 3.11.
Axisymmetric 4-node elements (CAX4) have been used.

The following assumptions have been introduced:

• the die is undeformable;

• the contact between powder and die walls is smooth;

• the initial configuration is that shown in Fig. 3.11.
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Figure 3.9: Photograph of the formed piece.
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Figure 3.10: Geometry of the formed piece (dimensions in mm).

It may be worth noting that the above assumptions are not particularly strong
in our specific analysis. In particular, we remark that, due to the large strains
that will be reached during pressing, the assumption that the initial configu-
ration shown in Fig. 3.11 is homogeneous does not affect much final results.

After the initial state – defined by initial values of void ratio and confining
pressure – has been prescribed, the loading history is assigned, which is divided
in the following three steps:

1. forming is prescribed by imposing the motion of the upper part of the
boundary (3.78 mm, corresponding to the value measured during form-
ing at the final load of 50 kN);
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Figure 3.11: Initial mesh.

Figure 3.12: Deformed mesh at the end of step 1.

Figure 3.13: Initial and deformed (end of step 1) meshes.
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2. unloading is simulated by prescribing null forces on the upper part of
the boundary;

3. ejection is simulated by prescribing null forces on all the boundary.

The deformed mesh at the end of step 1 is shown in Fig. 3.12, whereas
the same mesh superimposed on the initial mesh is shown in Fig. 3.13. It
can be noted that the elements near the corner of the punch are unphysically
distorted so that results in this zone should not be considered realistic. It is
immediate to conclude from Figs. 3.12 and 3.13 that the deformation suffered
by the piece is quite high.

The hydrostatic stress component p (taken positive when compressive), the
Mises stress q and the void ratio e are reported in Figs. 3.14–3.16, respectively,
at the end of step 1.

Excluding the small, unrepresentative zone near the corner of the punch,
the hydrostatic stress p ranges from 42.3 MPa to 103 MPa and the Mises
stress q from 25.1 MPa to 118 MPa. These values show that the stress is
highly inhomogeneous.

Values of the hydrostatic and Mises stress components at the end of step 2
are reported in Figs. 3.17 and 3.18, whereas the map of void ratio is shown in
Fig. 3.19.

It may be important to note that residual stress is quite high, due to the
lateral constraint still present at the end of step 2. The knowledge of the
lateral stress is important for practical purposes since the force needed for
the ejection of the final piece can be estimated through Coulomb friction law,
when the lateral stress at the end of step 2 is known. A rough, but simple
evaluation can be immediately obtained from numerical output at the end of
step 2 employing the formula

ejection force = α tan φ (mean lateral stress × lateral surface of the piece),

where φ is the powder friction angle (equal to 32◦ in our case) and α is a
coefficient dependent on the roughness of the die wall and ranging between 0
and 1, typically α = 0.6.

The deformed mesh at the end of step 3 is shown in Figs. 3.20 and 3.21.
In the latter figure, the deformed mesh is superimposed on the initial. It can
be noted that the model correctly predicts that the springback effect and the
shape distortion are very small. In particular, the final diameter of the piece
is accurately estimated, 0.1 mm larger than the inner diameter of the die.
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Figure 3.14: Distribution of hydrostatic stress p (MPa) at the end of step 1.

Figure 3.15: Distribution of Mises stress q (MPa) at the end of step 1.

Figure 3.16: Void ratio distribution at the end of step 1.
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Figure 3.17: Distribution of hydrostatic stress p (MPa) at the end of step 2.

Figure 3.18: Distribution of Mises stress q (MPa) at the end of step 2.

Figure 3.19: Void ratio distribution at the end of step 2.
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Figure 3.20: Deformed mesh at the end of step 3.

Figure 3.21: Initial and deformed (step 3) meshes.

The residual stress distribution at the end of forming is reported in Figs. 3.22
and 3.23, in terms of hydrostatic stress and Mises stress components. The void
ratio distribution is finally shown in Fig. 3.24.

Excluding the small, unrepresentative zone near the corner of the punch,
the hydrostatic stress p ranges now between -1.57 MPa and 5.64 MPa and
the Mises stress q between 0.89 MPa and 5.87 MPa. Moreover, the void ratio
varies between 0.68 and 0.84. It can be noted that the minimum void ratio is
not associated with the maximum residual mean stress, it is rather associated
with the maximum mean stress reached during loading (step 1). The results
suggest that two oblique zones of material are formed, the outer of which
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Figure 3.22: Distribution of hydrostatic stress p (MPa) at the end of step 3.

Figure 3.23: Distribution of Mises stress q (MPa) at the end of step 3.

Figure 3.24: Void ratio distribution at the end of step 3.
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Figure 3.25: Distribution of cohesion c (MPa) at the end of step 3.

Figure 3.26: Distribution of bulk modulus Kt (MPa) at the end of step 3.

Figure 3.27: Distribution of shear modulus µ (MPa) at the end of step 3.
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is subject to high compressive mean stresses, whereas the inner is subject to
tensile stresses. This can represent a potentially dangerous situation, in which
the tensile stresses tend to open possible microcracks, leading to serious defects
formation in the green. However, even when the green is approximately free of
macro defects, its mechanical behaviour and shrinkage during future sintering
are deeply affected by the inhomogeneities in the residual stress and density
distributions.

The cohesion c attained by the material at the end of the overall process is
shown in Fig. 3.25, whereas the elastic properties of the final piece are reported
in Figs. 3.26 and 3.27, in terms of tangent bulk modulusKt and shear modulus
µ. It can be concluded from the comparison of these maps with Fig. 3.14 that
there is a strong relation between mechanical properties gained by the material
in the final piece and the maximum mean stress reached during loading (step
1), which seems to be therefore the most important parameter in the forming
process.

Experimental and simulated load displacement curves during forming of
the piece shown in Fig. 3.9 are compared in Fig. 3.28 (natural and semilog-
arithmic representations are reported), where a satisfying agreement can be
noted.

Results discussed in this section represent an important advance toward
the development of a model capable of realistically describing forming pro-
cesses of ceramic materials. Even if the experimental results are still incom-
plete and the employed elastoplastic model has been developed in a small
strain framework, our results demonstrate that it is possible to realistically
predict:

• the springback effect and related shape distortion,

• the force needed for mold ejection,

• the residual stress distribution,

• the gain in cohesion and the final elastic properties,

• the density distribution and the related presence of defects in the green
body.

The final remark is related to the prediction of defects in the sintered piece
and therefore its investigation has an important practical meaning.

In closure, we mention that the modelling presented in this Chapter can be
extended in different directions. Referring to thermoplasticity, the sintering



68 3. Elastoplastic coupling in a small strain formulation

0.5 1 1.5 2 2.5 3 3.5 4

Displacement, mm

10

20

30

40

50

60

L
o
a
d
,

k
N

Experimental

Simulated

0.5 1 1.5 2 2.5 3 3.5 4

Displacement, mm

0.01

0.1

1

10

100

L
o
a
d
,

k
N

Experimental

Simulated

Figure 3.28: Experimental and simulated load vs. displacement curves, in a
natural and semilog representation.

phase might be covered by modelling, so that simulation could be extended
to the entire production process. Moreover, both sintering aids and powder
characteristics might enter the elastic-plastic constitutive laws, so that the
optimal powder composition and morphology could be predicted for different
forming problems.



Chapter 4

Elastoplastic coupling at large strain

4.1 Introduction

Even if forming of ceramic powders may involve deformations up to 50%,
we believe that the ‘gross’ material behaviour is dominated by nonlinearities
already occurring when deformations are still small. Therefore, the infinitesi-
mal theory can often be considered sufficient to describe forming of ceramics.
There are however circumstances where a small strain formulation represents
only a mere approximation and a large strain analysis is needed. Therefore,
it has been considered appropriate to extend the model presented in Chapter
3 to a fully general large strain framework.

A large strain formulation of the model presented in Chapter 3 is given
here, following concepts introduced by Hill and Rice (1973) (see also Hill, 1978
and Bigoni, 2000), which does not require any particular choiche of elastic and
plastic strain decomposition, elastic law, yield function, flow and hardening
rules, so that it naturally embodies the concept of elastoplastic coupling, fun-
damental in the small strain setting. After the general framework is provided,
the multiplicative strain decomposition by Lee (1969) and Willis (1969) is
employed together with the requirement that the elastic response is isotropic
and all laws provided for the infinitesimal theory are consistently generalized
to include large strains. It is shown that the constitutive framework, coupled
with the generalized law of small strain formulation, ‘spontaneously’ leads to
a setting involving the Biot stress and its work-conjugate strain measure.

69
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4.2 A premise: the skeleton of large strain elastoplasticity

A broad constitutive framework for isothermal and time independent large
elastoplastic deformations is presented, starting from recalling the concept
of work coniugacy in the Hill sense (1968, 1978). In particular, employing
Ogden’s (1984) notation, a pair of symmetric, Lagrangean, stress T (m) and
strain E(m) measures1 are work-conjugate when their scalar product gives the
stress power density per unit volume

T (m) · Ė
(m)

= S · Ḟ , (4.1)

where F is the deformation gradient and S the first Piola-Kirchhoff stress
tensor

S = JTF−T = KF−T , (4.2)

in which J = detF and T and K are the Cauchy and Kirchhoff stresses,
respectively.

For integer (poisitive, null or negative) exponent m, we introduce the
following Lagrangean strain measures


E(m) =

1
m

(Um − I), if m �= 0,

E(0) = log U , if m = 0,

(4.3)

where U = (F T F )1/2 is the right stretch tensor. For a givenm, E(m) is defined
by (4.3) and the corresponding T (m) can be defined imposing eqn. (4.1). For
instance, for m = 2, the Green-Lagrange strain results from eqn. (4.3) and
the eqn. (4.1) provides for T (2) the second Piola-Kirchhoff stress tensors,

E(2) =
1
2
(
U2 − I

)
, conjugate to T (2) = JF−1TF−T . (4.4)

A conjugate pair of stress and strain that will become useful later is formed
by the Biot stress tensor T (1) and the strain measure E(1),

E(1) = U − I, conjugate to T (1) =
1
2

(
T (2)U + UT (2)

)
. (4.5)

It is well-known however that it is not always the easy task of the two
above examples to obtain the stress measure conjugated to a given strain of

1The notation T m = T T ...T︸ ︷︷ ︸
m times

(or Em) should not be confused with T (m) (or E(m)).



4.2. A premise: the skeleton of large strain elastoplasticity 71

the form (4.3). For instance, the conjugate of the logarithmic strain E(0) has
a very complex form (Hoger, 1987) which semplifies to the rotated stress only
when the two measures itself are coaxial,

E(0) = log U conjugate to T (0) = RT KR, (4.6)

if and only if
E(0)T (0) = T (0)E(0). (4.7)

The coaxiality condition (4.7) is satisfied for isotropic elasticity, but may be
not in more general contexts, such as for instance elastoplasticity (Sansour,
2001).

Following Bigoni (2000), inelastic materials are considered that may at any
stage of deformation exhibit a purely elastic response for appropriate loading.
For these materials, elastic response is assumed to be a one-to-one relation
between T (m) and E(m), though depending on the prior inelastic history, i.e.

T (m) = T̂
(m)

(E(m),K), E(m) = Ê
(m)

(T (m),K), (4.8)

where T̂
(m)

and Ê
(m)

are functionals of the prior history of inelastic deforma-
tion through the unspecified set K of variables of generic tensorial nature (thus
embracing second-order tensors and scalars). For a purely elastic deformation
rate (in other words, at fixed K) we have

Ṫ
(m)

= E[Ė
(m)

], Ė
(m)

= M[Ṫ
(m)

], (4.9)

where

E(E(m),K) =
∂T̂

(m)

∂E(m)
, M(T (m),K) =

∂Ê
(m)

∂T (m)
, (4.10)

and obviously
E = M

−1. (4.11)

For an increment involving elastic and inelastic strain rates, we may write

Ṫ
(m)

= E[Ė
(m)

] − Λ̇E[P ], Ė
(m)

= M[Ṫ
(m)

] + Λ̇P , (4.12)

where P ∈ Sym,

Λ̇P = −E
−1∂T̂

(m)

∂K [K̇] =
∂Ê

(m)

∂K [K̇] (4.13)

and the scalar Λ̇ ≥ 0, called the plastic multiplier, is null when K̇ = 0.
A yield surface is assumed at each K. This may be alternatively expressed
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as fT (m)(T (m),K) ≤ 0 or as fE(m)(E(m),K) ≤ 0, thus defining regions of
the T (m) or E(m) space, respectively, within which the response is elastic.
Prager’s consistency condition requires ḟT (m) = ḟE(m) = 0, when inelastic
strain rate is different from zero. As a consequence, employing the stress
space representation, the elastoplastic incremental constitutive equations can
be written as

Ṫ
(m)

=




E[Ė
(m)

] − 1
g
< Q · E[Ė

(m)
] > E[P ] if f(T (m),K) = 0,

E[Ė
(m)

] if f(T (m),K) < 0,

(4.14)

where the operator < · > denotes the Macaulay brackets, i.e. ∀ α ∈ R,
< α >= (α + |α|)/2. Moreover, Q = ∂fT (m)/∂T (m) ∈ Sym is the yield
function gradient and the plastic modulus

g = h+ Q · E[P ], (4.15)

is assumed to be strictly positive (a negative plastic modulus would correspond
to a so-called locking material, not investigated here). In the Hill (1967b) no-
tation, the hardening modulus h in (4.15) describes hardening when positive,
softening when negative and perfect plasticity when null. It is defined as

Λ̇h = −∂fT (m)

∂K · K̇. (4.16)

As Hill (1967b) remarks, hardening and softening are not measure-invariant
concepts, in the sense that h depends on the choice of T (m) and E(m). There-
fore, the nomenclature is, to some extent, arbitrary. Moreover, we remark
that, in addition to h, also Q, P and E are measure-dependent. On the con-
trary, the plastic modulus g can be shown to be measure-independent (Hill,
1967b; Petryk, 2000). Note also that all quantities appearing in the rate
equations (4.14) fully depend on the entire path of deformation reckoned from
some ground state.

The scalar product of the first equation in (4.14) with Q gives

Q · Ṫ
(m)

= Q · E[Ė
(m)

] − Q · E[P ]
g

< Q · E[Ė
(m)

] > . (4.17)

In the case when h > 0, we note that

sgn(Q · E[Ė
(m)

]) = sgn(Q · Ṫ
(m)

).
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Therefore, assuming h > 0 and using (4.17), we obtain the inverse constitutive
equations

Ė
(m)

=




M[Ṫ
(m)

] +
1
h
< Q · Ṫ

(m)
> P if f(T (m),K) = 0,

M[Ṫ
(m)

] if f(T (m),K) < 0,

(4.18)

It may be important to remark that all possible choices of T (m) and E(m)

in (4.14) or (4.18) are equivalent and that all resulting constitutive equations
respect the requirement of material frame indifference (Truesdell and Noll,
1965).

The above-presented constitutive framework is very general and does not
imply a particular choice of

• elastic and plastic strain decomposition,

• hypo- or hyper- elastic law,

• flow and hardening rules.

It is however clear that in order to set up the constitutive modelling of a
particular material, we need to introduce specific laws. This objective will
be pursued in two steps of deceasing generality: first, we will introduce the
specific elastic and plastic decomposition (the multiplicative decomposition
will be selected) and requirement of isotropy of the elastic constitutive law,
second, a form of elastic constitutive equation capable of describing the elastic
range of granular materials will be introduced.

4.3 The multiplicative decomposition and the elastic law

The multiplicative decomposition of deformation gradient F into elastic F e

and plastic F p components introduced by Lee (1969) and Willis (1969) is
adopted (Fig. 4.1)

F = F eF p. (4.19)

According to eqn. (4.19), using the left polar decomposition F = V R, we
introduce the elastic and plastic left stretch and rotation tensors V e, V p, Re

and Rp, satisfying
F e = V eRe, F p = V pRp, (4.20)
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Figure 4.1: Reference, deformed and intermediate configurations.

while using the right polar decomposition F = RU , the right elastic and
plastic stretch tensors U e and Up are defined so that they satisfy

F e = ReU e, F p = RpUp. (4.21)

An expedient crucial to describe the behaviour of granular materials is to
refer to the logarithmic strains defined as

ε = log V , εe = log V e, εp = log V p, (4.22)

and
E(0) = log U , E(0)

e = log U e, E(0)
p = log Up. (4.23)

The interest in employing the definitions (4.22) and (4.23) is that these allow
a decoupling between the volumetric logarithmic elastic and plastic deforma-
tions, namely

tr ε = tr εe + tr εp = tr E(0) = tr E(0)
e + tr E(0)

p , (4.24)
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or, employing the usual definition J = det F [noting that for every symmetric
tensor A the following property holds tr(log A) = log(det A)]

log J = log Je + log Jp. (4.25)

Let us refer now to an isotropic elastic law relating the Kirchhoff stress K
to the elastic deformation gradient F e in the generic form

K = K̂(F e, ki), (4.26)

where function K̂ may depend also on generic plastic scalar variables ki,
assumed invariant with respect to every symmetry group of the material and
change in observer. Function K̂ must satisfy

P1. the isotropy requirement

K̂(F e, ki) = K̂(F eP , ki), ∀P ∈ Orth+, (4.27)

P2. the objectivity requirement

K̂(F e, ki) = QT K̂(QF e, ki)Q, ∀Q ∈ Orth+. (4.28)

As a consequence of property (P1), the rotation in the left polar decom-
position does not alter the values of function K̂,

K̂(F e, ki) = K̂(V e, ki), (4.29)

so that function K̂ depends only on the elastic left stretch tensor. If we
consider that

F e = RUU−1
p RT

p , (4.30)

isotropy and objectivity allow us to introduce the following transformations

K = K̂(RUU−1
p RT

p , ki) = K̂(RUU−1
p , ki) = RK̂(UU−1

p , ki)RT , (4.31)

so that we get
K = K̂(F e, ki) = RK̂(UU−1

p , ki)RT . (4.32)

If now we employ the rotated stress RT KR, we conclude that the following
constitutive law can be written

RT KR = K̂(UU−1
p , ki). (4.33)
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Now, the rotated stress is related to the Biot stress through (Ogden, 1984)

T (1) =
1
2
(
U−1RT KR + RT KRU−1

)
, (4.34)

so that in conclusion we obtain

T (1) =
1
2

(
U−1K̂(UU−1

p , ki) + K̂(UU−1
p , ki)U−1

)
. (4.35)

Since U = E(1) +I, eqn. (4.35) expresses a relation between the two work-
conjugate measures T (1) and E(1) of the type (4.8), with set K including now
U−1

p and ki.
It is instructive to see how eqn. (4.35) reduces in the specific case of the

infinitesima theory. This is developed in Section 4.6.

4.4 Elastoplastic coupling

The elastic properties of granular materials can be described by a nonlinear
elastic law providing a generalization to finite strains of the equation thor-
oughly discussed in Chapter 3 and admitting the following potential

φ(εe, εp) = −µ
3
(tr εe)2 + c tr εe (4.36)

+ (p0 + c)
[(
d− 1

d

)
(tr εe)2

2κ̃
+ d1/nκ̃ exp

(
− tr εe

d1/nκ̃

)]
+ µ εe · εe,

where p0 is the initial confining pressure, c, d, and µ are scalar parameters
depending on the volumetric plastic strain tr εp = tr E

(0)
p and inducing the

elastoplastic coupling, κ̃ is the elastic logarithmic bulk modulus. The Kirch-
hoff stress results in the form

K =
∂φ

∂εe
=
{
−2

3
µ tr εe + c (4.37)

+(p0 + c)
[(
d− 1

d

)
tr εe

κ̃
− exp

(
− tr εe

d1/nκ̃

)]}
I + 2µ εe.

The elastic constitutive law (4.37) can be written in the form (4.26) with

K̂(F e, ki) =
{
−1

3
µ tr log F eF

T
e + c (4.38)

+(p0 + c)
[(
d− 1

d

)
tr log F eF

T
e

2κ̃
− exp

(
−tr log F eF

T
e

2d1/nκ̃

)]}
I

+µ log F eF
T
e .
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where the set ki includes c, d, and µ. It is obvious that eqn. (4.38) can
be written in the form (4.35), not reported for conciseness. We are now in
a position to explicitly write the fourth-order elastic tensor E appearing in
eqn. (4.10)1. This takes the form

E = −1
2

(
U−1 ⊗ K̂U−1 + K̂U−1 ⊗U−1

)
(4.39)

+
1
2

(
∂U−1K̂(X, ki)

∂X
+
∂K̂(X, ki)U−1

∂X

)
X=UU−1

p

(
I ⊗U−1

p

)
,

so that, employing eqn. (4.38), we obtain

∂K̂(X , ki)
∂X

= (4.40){[
−µ

3
+Kt(X)

]
I ⊗ I + µI ⊗ I

}(∂ log Y

∂Y

)
Y =XXT

(I ⊗X + X ⊗ I) ,

in which

Kt(X) =
p0 + c

2κ̃

[
d− 1

d
+ d−1/nexp

(
−tr log XXT

2d1/nκ̃

)]
. (4.41)

and
∂ log Y

∂Y
=

∞∑
n=1

(−1)n+1

n

n−1∑
r=0

(Y − I)r ⊗ (Y − I)n−1−r . (4.42)

Note that four tensorial products between second-order tensors A and B have
been employed, which can be defined just specifying the way they act on every
tensor C

(A ⊗ B)[C] = (C · BT )A, (A⊗B)[C] =
1
2
A
(
C + CT

)
BT ,

(A⊗B)[C] = ACBT , (A⊗B)[C] = ACT BT ,

(4.43)

so that the following property holds

⊗ =
1
2

(⊗ + ⊗ ) . (4.44)

Finally, we remark that truncation of the series expansion (4.42) yields
approximations of the derivative of the logarithm of a tensor, which may be
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not particularly complicated and often sufficient to practical purposes. For
instance, a truncation at third order gives

∂ log Y

∂Y

.= I ⊗ I − 1
2

[I ⊗ (Y − I) + (Y − I)⊗ I] (4.45)

+
1
3
[
I ⊗ (Y − I)2 + (Y − I)⊗ (Y − I) + (Y − I)2 ⊗ I

]
.

In the absence of ad hoc experimental results, we employ for simplicity
a yield function with same form adopted for the infinitesimal theory (see
Chapter 3), where the Cauchy stress is replaced by the Biot stress T (1). This
can be pursued redefining the invariants p, q and θ in terms of Biot stress

p = −tr T (1)

3
, q =

√
3J2, θ =

1
3
cos−1

(
3
√

3
2

J3

J
3/2
2

)
, (4.46)

where θ ∈ [0, π/3] and

J2 =
1
2

dev T (1) · dev T (1), J3 =
1
3

tr
(
dev T (1)

)3
,

dev T (1) = T (1) − tr T (1)

3
I

(4.47)

and taking the yield function from Chapter 2 (where it has also been motivated
from mechanical point of view)

F (T (1), pc, c) = f(p, pc, c) +
q

g(θ)
, (4.48)

where pc and c are the parameters governing hardening, and

f(p, pc, c) =




−Mpc

√
(Φ − Φm) [2(1 − α)Φ + α] if Φ ∈ [0, 1],

+∞ if Φ /∈ [0, 1],
(4.49)

in which

Φ =
p+ c(tr E

(0)
p )

pc(tr E
(0)
p ) + c(tr E

(0)
p )

(4.50)

and
g(θ) =

1

cos
[
β
π

6
− 1

3
cos−1 (γ cos 3θ)

] . (4.51)
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Note that M , m, α, β, and γ are material parameters already described in
Chapter 2.

The model is now written in the form (4.8) with a properly defined yield
function of the type fT (1)(T (1),K) ≤ 0, so that we can jump to the incremental
form (4.14), where the elastic fourth-order tensor E is given by eqns. (4.39)—
(4.42) and the flow mode tensor P and yield function gradient Q are given
by

P = Q − 1
3
ε tr Q (1 − Φ) I, Q =

∂F (T (1), pc, c)
∂T (1)

, (4.52)

where 0 < ε < 1 and the form of Q can be obtained from eqns. (2.14)—(2.16)
of Chapter 2, replacying σ with T (1).

The hardening law eqn. (4.16) is similar to the analogous equation intro-
duced in Chapter 3. In particular, we have

Λ̇h = −
(
∂F

∂pc
ṗc +

∂F

∂c
ċ

)
, (4.53)

where

∂F

∂pc
= −M

√
(Φ − Φm) [2(1 − α)Φ + α] (4.54)

+M
pc(p+ c)
(pc + c)2

(
1 −mΦm−1

)
[2(1 − α)Φ + α] + 2(1 − α) (Φ − Φm)

2
√

(Φ − Φm) [2(1 − α)Φ + α]
,

and

∂F

∂c
= −Mpc(pc − p)

(pc + c)2
· (4.55)

·
(
1 −mΦm−1

)
[2(1 − α)Φ + α] + 2(1 − α) (Φ − Φm)

2
√

(Φ − Φm) [2(1 − α)Φ + α]
,

in which

ṗc = − p2
c exp(tr E

(0)
p )

ã1Λ1 exp
(
−Λ1

pc

)
+ ã2Λ2 exp

(
−Λ2

pc

) tr Ė
(0)
p , (4.56)

and
ċ = c∞ΓH(pc − pcb) exp [−Γ(pc − pcb)] ṗc. (4.57)

Parameters Λ1, Λ2, ã1, ã2, c∞, Γ, and pcb have been introduced and motivated
in Chapter 3.
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Since the hardening is governed by the accumulated plastic deformation,
trE(0)

p , the knowledge of the evolution law for this variable is needed to com-
plete the formulation. In particular eqn. (4.13)1 can be develped to yield

Λ̇P = G

[
Ė

(0)
p

]
, (4.58)

where tensor G, assumed positive definite, is given by

G = −1
2
ξ2 E

−1

[(
U−1∂K̂

∂c
+
∂K̂

∂c
U−1

)
⊗ I

]

−1
2
ξ3 E

−1

[(
U−1∂K̂

∂d
+
∂K̂

∂d
U−1

)
⊗ I

]

−1
2
ξ4 E

−1

[(
U−1∂K̂

∂µ
+
∂K̂

∂µ
U−1

)
⊗ I

]
(4.59)

+
1
2

E
−1

(
∂U−1K̂(X)

∂X
+
∂K̂(X)U−1

∂X

)
X=UU−1

p

·

· (UU−1
p ⊗U−1

p

) ∂ exp E
(0)
p

∂E
(0)
p

,

in which

∂K̂

∂c
= (4.60){
1 +

[(
d− 1

d

)
tr log UU−2

p U

2κ̃
− exp

(
−tr log UU−2

p U

2d1/nκ̃

)]}
I,

∂K̂

∂d
=

{
(p0 + c) tr log UU−2

p U

2κ̃

[
1 +

1
d2

(4.61)

− 1
2nd1+1/n

exp

(
−tr log UU−2

p U

2d1/nκ̃

)]}
I,

∂K̂

∂µ
=
(
−1

3
tr log UU−2

p U

)
I + log UU−2

p U , (4.62)
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and

ξ2 = −c∞ΓH(pc − pcb) exp [−Γ(pc − pcb)] p2
c exp(tr E

(0)
p )

ã1Λ1 exp
(
−Λ1

pc

)
+ ã2Λ2 exp

(
−Λ2

pc

) , (4.63)

ξ3 = − BH(pc − pcb) p2
c exp(tr E

(0)
p )

ã1Λ1 exp
(
−Λ1

pc

)
+ ã2Λ2 exp

(
−Λ2

pc

) , (4.64)

ξ4 =
(
d− 1

d

)
µ1ξ2 + c

(
1 +

1
d2

)
µ1ξ3. (4.65)

Note that the exponential of a tensor has been introduced in eqn. (4.59),
defined as

∂ exp E
(0)
p

∂E
(0)
p

=
∞∑

n=1

1
n!

n−1∑
r=0

(
E(0)

p

)r ⊗
(
E(0)

p

)n−1−r
, (4.66)

which, truncated at the third order becomes

∂ expE
(0)
p

∂E
(0)
p

.= I ⊗ I +
1
2

(
I ⊗E(0)

p + E(0)
p ⊗ I

)
(4.67)

+
1
6

[
I ⊗ (E(0)

p )2 + E(0)
p ⊗E(0)

p + (E(0)
p )2 ⊗ I

]
.

4.5 A summary of the equations governing the finite strain
model

In this section we provide a brief summary of the equations that compose the
constitutive model in the large strain framework. The elastoplastic incremen-
tal constitutive equations take the form

Ṫ
(1)

=




E[Ė
(1)

] − 1
g
< Q · E[Ė

(1)
] > E[P ] if f(T (1), pc, c) = 0,

E[Ė
(1)

] if f(T (1), pc, c) < 0,

(4.68)

where T (1) is the Biot stress and E(1) = U − I is the corresponding work
conjugate strain measure. The elastic tensor E is given in eqns. (4.39)–(4.42).
The yield fuction f(T (1), pc, c) and its gradient Q = ∂f/∂T (1) are obtained
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from those defined in Chapter 2, replacing the Cauchy stress with the Biot
stress T (1), eqns. (4.46)–(4.51). The flow mode tensor P is defined by the
following flow rule

P = Q − 1
3
ε tr Q (1 − Φ) I, (4.69)

where ε is a material parameter and Φ = (p+c)/(pc +c). The plastic modulus
g, assumed to be strictly positive, is given by

g = h+ Q · E[P ],

where h is the hardening modulus. The hardening modulus is obtained sub-
stituting eqn. (4.58) in eqns. (4.56)–(4.57) and eqn. (4.53), yielding

h = −
(
∂F

∂pc
p̄c +

∂F

∂c
c̄

)
, (4.70)

where ∂F/∂pc and ∂F/∂c are given in eqns. (4.54)–(4.55) and

p̄c = − p2
c exp(tr E

(0)
p )

ã1Λ1 exp
(
−Λ1

pc

)
+ ã2Λ2 exp

(
−Λ2

pc

) tr G
−1[P ],

c̄ = c∞ΓH(pc − pcb) exp [−Γ(pc − pcb)] p̄c,

(4.71)

Finally, the tensor G is given in eqns. (4.59)–(4.66).

4.6 Reduction to the case of infinitesimal theory

If the gradient of displacement vector u is assumed to represent a small pa-
rameter,

U2 = I + 2ε + o(ε2) .= I + 2ε, (4.72)

where ε = (∇u+∇uT )/2 is the infinitesimal strain and the symbol .= is used
with obvious meaning, we readily obtain

U
.= I + ε, U−1 .= I − ε, R

.= I + W , RT .= I − W , (4.73)

where W = (∇u−∇uT )/2 is the infinitesimal rotation. It follows from (4.73)
and the definitions (4.4) and (4.5) that

E(1) .= E(2) .= ε. (4.74)
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Assuming small both the elastic and the plastic contributes to the displace-
ment gradient, we see that (4.33) reduces to

K̂(UU−1
p , ki)

.= K̂(I + ε − εp, ki), (4.75)

from which the infinitesimal additive decomposition of elastic and plastic de-
formations becomes transparent.

Considering now eqn. (4.35), this approximates to

T (1) .=
1
2

(
(I − ε)K̂(I + ε − εp, ki) + K̂(I + ε − εp, ki)(I − ε)

)
. (4.76)

Taking the Taylor series expansion of function K̂ yields

K̂(I + ε − εp, ki)
.= K̂(I, ki) +

(
∂K̂(I + X, ki)

∂X

)
X=0

[ε − εp]. (4.77)

The term K̂(I) represents a pre-stress that is usually neglected in the in-
finitesimal theory, continuing with this approximation and using (4.77) into
(4.76), gives

T (1) .=

(
∂K̂(I + X, ki)

∂X

)
X=0

[ε − εp]. (4.78)

Finally, taking into account that the infinitesimal theory is recovered when
terms differentiating T (1) from σ are neglected and identifying the fourth-
order tensor in eqn. (4.78) with the elasticity tensor, the well-known setting
of the infinitesimal theory is fully recovered. Note that if this elasticity tensor
depends on the plastic deformation, the elastoplastic coupling is also recov-
ered.
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Chapter 5

Flutter instability in granular materials

5.1 Introduction

Flutter instability is a form of material instability corresponding to the oc-
currence of complex conjugate eigenvalues of the acoustic tensor (Rice, 1977).
As related to Coulomb friction at the microscale, this instability is believed
to represent a key feature in the deformation of granular materials. While
the possibility of occurrence of flutter instability has been thoroughly inves-
tigated (see, among others, An and Schaeffer, 1990; Loret, 1992; Bigoni and
Zaccaria, 1994; Bigoni, 1995; Bigoni and Loret, 1999; Loret et al. 2000), its
mechanical consequences are almost unexplored. These are of fundamental
importance, since they serve to identify flutter as a phenomenon occurring in
real problems.

To shed light on this problem, a perturbative approach is developed in this
section, following and generalizing an idea by Bigoni and Capuani (2002) for
strain localization. In particular, limiting the analysis to the loading branch
of the constitutive elastoplastic operator (see Bigoni and Petryk, 2002 for
a discussion on this delicate point), we consider an infinite body, homoge-
neously and quasi-statically deformed in plane strain. This configuration is
dynamically perturbed by superposition of a pulsating dipole (two equal and
opposite forces having a magnitude sinusoidally changing with time) and the
resulting effects are investigated. To this purpose, a dynamic, infinite body
Green’s function is obtained for the loading branch of a constitutive equation
exhibiting flutter instability (taken from Bigoni and Petryk, 2002). The result
is new and is obtained employing the Willis (1973; 1980; 1991) formalism. It
is however limited to the case in which the eigenvalues of the acoustic tensor
are still real, but the solution can be employed until the limit of flutter (thus
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following Bigoni and Capuani, where shear bands have been explored using
perturbations still within the elliptic range). It is shown that flutter insta-
bility is essentially different from shear bands, in the sense that the latter
instability becomes already evident when the boundary of loss of ellipticity is
approached, while the former remains undetected until the eigenvalues lies in
the real range.

5.2 The constitutive model

Assuming an objective symmetric flux of the Kirchhoff stress
◦
K and the

stretching (or Eulerian strain rate) D as measures of stress and strain rates,
respectively, we consider an elastoplatic constitutive model of the form

◦
K=




E[D] − 1
H

〈Q · E[D]〉E[P ] if f(K,K) = 0,

E[D] if f(K,K) < 0,
(5.1)

where the symbol 〈 · 〉 denotes the Macaulay brackets operator (defined for
every scalar α as 〈α〉 = (α + |α|)/2), E is the elastic fourth-order tensor, f
is the yield function in stress space depending on a collection K of internal
variables (of arbitrary scalar or tensorial nature); moreover, P and Q are the
normals to the plastic potential and yield surface, respectively, and the plastic
modulus H is related to the hardening modulus h through

H = h+ Q · E[P ]. (5.2)

We can identify
◦
K with the Oldroyd derivative,

◦
K= K̇ − LK − KLT , (5.3)

where L = Ḟ F−1 is the spatial velocity gradient, and F the deformation
gradient. Considering now the loading branch, Q · E[D] > 0, we get

K̇ = E[L] + LK + KLT − 1
H

(E[P ] ⊗ E[Q])[L], (5.4)

in which we have made use of the minor symmetries of E. Finally, the relation
K = SF T , between the Kirchhoff stress K and the first Piola-Kirchhoff stress
S, leads to the explicit relation

Ṡ = C[Ḟ ], (5.5)
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with

C = (I × F−1)E(I × F−T ) + I ×F−1S (5.6)

− 1
H

(I ×F−1)(E[P ] ⊗ E[Q])(I × F−T ),

where the simbol × denotes the tensorial product defined as

(A × B) [C] = ACBT . (5.7)

5.2.1 Anisotropic elasticity

We assume an anisotropic elastic law of the form

E = λB ⊗ B + 2µB ⊗B, (5.8)

where λ and µ are material constants subject to the restrictions µ > 0 and
3λ + 2µ > 0, B is a symmetric and positive definite second-order tensor,
namely

B = b1b ⊗ b + b2(I − b ⊗ b), (5.9)

which is simply the spectral representation of B, so that b1 and b2 are the
eigenvalues of B, while the line spanned by b and the plane (through 0)
perpendicular to b are the corresponding eigenspaces. Moreover the material
constants b1 and b2 are assumed to depend on a single angular parameter b̂,
restricted to the range ]0◦, 90◦[ for the positive definiteness of B,

b1 =
√

3 cos b̂, b2 =

√
3
2

sin b̂, (5.10)

so that the isotropic behaviour is recovered when b1 = b2 = 1, or b̂ ≈ 54.74◦.
Note that the tangent constitutive operator C in eqn. (5.6) coupled with the
anisotropic elastic tensor E defined by eqns. (5.8)–(5.10) does not have in
general the major symmetry.

5.2.2 Acoustic tensor

The acoustic tensor Aep(n) associated with the tangent constitutive operator
C is defined by the identity Aep(n)g = C[g ⊗ n]n, where n and g are the
direction and amplitude of wave propagation, respectively. Thus the acoustic
tensor corresponding to C in eqn. (5.6) is

Aep(n) = Ae(n) − 1
H

(
E[P ]F−Tn ⊗ E[Q]F−T n

)
, (5.11)
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where Ae(n) is the elastic acoustic tensor, defined as

Ae(n) = (λ+ µ)(BF−T n) ⊗ (BF−T n) (5.12)
+ µ

[
(F−T n) · (BF−T n)

]
B +

[
n · (F−1Sn)

]
I

Due to the fact that C does not have the major symmetry, the acoustic tensor
(5.11)–(5.12) is not symmetric.

5.3 Plane problem

From now on we take the current configuration as reference, so that F = I
and S = K momentarily. Let us turn our attention to the plane problem in
which it is assumed that the vector b lies in the plane spanned by k1 and k2,
which are two of unit eigenvectors ki (i = 1, 2, 3) of K. We are interested in
analysing the propagation direction n also lying in the plane spanned by k1

and k2. Assuming the Drucker-Prager yield criterion, the tensors P and Q
take the forms

P = cosχ
dev(T )
|dev(T )| +

sinχ√
3

I, Q = cosψ
dev(T )
|dev(T )| +

sinψ√
3

I, (5.13)

respectively, where T is the Cauchy stress and dev(·) is the linear operator
giving the deviatoric part of a second-order tensor. The angular parameters
χ and ψ represent the dilatancy and the pressure sensitivity of the material,
respectively.

It is convenient now to choose {n, s,k3}, where s = k3 × n, as the refer-
ence basis. Thus, we can easily obtain the components of the acoustic tensor
Aep(n), and get it in matrix form


Ae
nn − 1

H
(n · q)(n · p) Ae

ns −
1
H

(n · q)(s · p) 0

Ae
ns −

1
H

(s · q)(n · p) Ae
ss −

1
H

(s · q)(s · p) 0

0 0 µb2(n · Bn) + n · Kn




(5.14)
where

q ≡ E[Q]n = λ(B · Q)Bn + 2µBQBn,

p ≡ E[P ]n = λ(B · P )Bn + 2µBPBn,

(5.15)
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and Ae
nn, Ae

ss, A
e
ns are the in-plane components of the elastic acoustic tensor

Ae(n), namely

Ae
nn = (λ+ 2µ)(n · Bn)2 + (n · Kn),

Ae
ss = (λ+ µ)(s · Bn)2 + µ(n · Bn)(s · Bs) + (n · Kn),

Ae
ns = (λ+ 2µ)(n · Bn)(s · Bn),

(5.16)

It is evident from the matrix representation (5.14) that

Aep
33 = µb2(n · Bn) + n · Kn, (5.17)

a quantity which we assume to be strictly positive, is the out-of-plane eigen-
value corresponding to a wave with out-of-plane amplitude (g proportional to
k3).

Taking the trace and the determinant of the matrix obtained by deleting
the third row and the third column in (5.14), we get the sum and the product
of the two in-plane eigenvalues aep

1 and aep
2 corresponding to waves with in-

plane amplitude (g lying in the plane spanned by k1 and k2),

aep
1 + aep

2 = Ae
nn +Ae

ss −
1
H

(f1 − f2),

aep
1 a

ep
2 = Ae

nnA
e
ss − (Ae

ns)
2 +

1
H

(Ae
nsf3 −Ae

ssf1 +Ae
nnf2),

(5.18)

where
f1 = (n · q)(n · p), f2 = −(s · q)(s · p),

f3 = (n · q)(s · p) + (s · q)(n · p).
(5.19)

Thus, a necessary and sufficient condition for the existence of complex con-
jugate eigenvalues aep

1 and aep
2 is that the discriminant of the corresponding

quadratic equation is not positive. It can be shown that this condition is
equivalent to the three conditions

f4 = (Ae
nn −Ae

ss)
2
[
(f1 + f2 + 2ef3)2 − (1 + 4e2)(f1 − f2)2

]
> 0,

f5 = (Ae
nn −Ae

ss)(f1 + f2 + 2ef3) > 0,

f5 −
√
f4

(Ae
nn −Ae

ss)2 + 4(Ae
ns)2

< H <
f5 +

√
f4

(Ae
nn −Ae

ss)2 + 4(Ae
ns)2

,

(5.20)
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where
e =

Ae
ns

Ae
nn −Ae

ss

. (5.21)

With reference to Fig. 5.1, let θσ and θn be the angles of inclination of b
and n, respectively, with respect to the stress principal axes k1.

k1

k2

b

n

s

�n

�s

Figure 5.1: Principal stress axes k1 and k2, axis of elastic symmetry b and propagation
direction n.

We are now in a position to analyse the conditions to get complex conjugate
in-plane eigenvalues of the acoustic tensor in terms of material parameters,
stress, and orientation of the axis of elastic symmetry. The number of param-
eters in play can be reduced by one, normalizing all the quantities which have
the dimension of stress in eqns. (5.14)-(5.20) through division by µ.

We summarize all these conditions as follows:

• Material parameters: elastic modulus λ/µ, anisotropy b̂, pressure sensi-
tivity ψ, and dilatancy χ.

• Principal stress values: σ1/µ, σ2/µ, σ3/µ.

• Orientation of the axis of elastic symmetry: θσ.

For every set of values of all the above parameters, it is possible to study
flutter for all the propagation directions n while varying the plastic modu-
lus H/µ, by use of inequalities (5.20). Then we can visualise the ranges in
which flutter occurs in the plane H/µ vs. θn. Restricting the analysis to the
infinitesimal theory, that corresponds to identifying the flux (5.3) with the
material time derivative K̇, the acoustic tensor Aep(n) depends on the stress
K only through P and Q and therefore it depends on the direction of K in
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stress space, but not on its norm. The analysis has been performed for six
plane stress states (σ3 = 0), whose directions in the (σ1/µ, σ2/µ) plane are
shown in Fig. 5.2.

s m1/

s m2/

(2,1)

(1,0)

(2,-1)(0,-1)
(1,-1)

(1,-2)

Figure 5.2: Stress directions in the σ1/µ vs. σ2/µ plane, for which the analysis has been
performed.

The results are reported in Figs. 5.3–5.8. The ranges of flutter instability
are shown in Figs. 5.3 and 5.4, in which parameters λ/µ, b̂, ψ, and χ are kept
constant and equal to 1, 80◦, 30◦, and 0◦, respectively, while parameter θσ

ranges between 0◦ and 90◦. Flutter occurs for the points inside the closed
curves. Figures 5.5 and 5.6 show the same analysis as before, except that now
parameter b̂ is equal to 10◦. Figures 5.7 and 5.8 refer again to b̂ = 80◦, but in
this case the material has dilatancy different from zero, namely χ = 15◦.

From the above analysis it can be deduced that this model permits one
to approach flutter starting from a well-behaved state. For instance, let us
consider the case shown in Fig. 5.9, in which the material is subject to uniaxial
traction, σ1/µ = 1, σ2/µ = 0, and the direction of the axis of elastic symmetry
is inclined at θσ = 15◦ with respect to the stress principal direction k1. The
material parameters are λ/µ = 1, b̂ = 80◦, ψ = 30◦, and χ = 0◦. It is clear that
we can start from a condition in which, say, H/µ = 2 and therefore flutter is
excluded for all directions of propagation, and then approach flutter decreasing
the plastic modulus H/µ until we get the apex of the curve at H/µ ≈ 1.229
and the onset of flutter occur for a particular direction of propagation, namely
θn ≈ −14.56◦.
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Figure 5.3: Ranges of flutter instability in the H/µ vs. θn plane, for some plane stress
states and orientations of the axis of elastic symmetry. Flutter occurs for the points inside
the closed curves. Material parameters: λ/µ = 1, b̂ = 80◦, ψ = 30◦, and χ = 0◦.
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Figure 5.4: Ranges of flutter instability in the H/µ vs. θn plane, for some plane stress
states and orientations of the axis of elastic symmetry. Flutter occurs for the points inside
the closed curves. Material parameters: λ/µ = 1, b̂ = 80◦, ψ = 30◦, and χ = 0◦.
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Figure 5.5: Ranges of flutter instability in the H/µ vs. θn plane, for some plane stress
states and orientations of the axis of elastic symmetry. Flutter occurs for the points inside
the closed curves. Material parameters: λ/µ = 1, b̂ = 10◦, ψ = 30◦, and χ = 0◦.
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Figure 5.6: Ranges of flutter instability in the H/µ vs. θn plane, for some plane stress
states and orientations of the axis of elastic symmetry. Flutter occurs for the points inside
the closed curves. Material parameters: λ/µ = 1, b̂ = 10◦, ψ = 30◦, and χ = 0◦.
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Figure 5.7: Ranges of flutter instability in the H/µ vs. θn plane, for some plane stress
states and orientations of the axis of elastic symmetry. Flutter occurs for the points inside
the closed curves. Material parameters: λ/µ = 1, b̂ = 80◦, ψ = 30◦, and χ = 15◦.
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Figure 5.8: Ranges of flutter instability in the H/µ vs. θn plane, for some plane stress
states and orientations of the axis of elastic symmetry. Flutter occurs for the points inside
the closed curves. Material parameters: λ/µ = 1, b̂ = 80◦, ψ = 30◦, and χ = 15◦.
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Figure 5.9: Range of flutter instability in the H/µ vs. θn plane, for uniaxial tension
σ1/µ = 1, σ2/µ = 0 and θσ = 15◦. Flutter occurs for the points inside the closed curves.
Material parameters: λ/µ = 1, b̂ = 80◦, ψ = 30◦, and χ = 0◦.

5.3.1 Spectral analysis of the acoustic tensor

Let us now turn our attention to the eigenvectors of the acoustic tensor Aep

in order to obtain the spectral representation. It can be noted that Aep
33 and

k3 are the out-of-plane eigenvalue and unit eigenvector, respectively, so that
we can focus our attention only on the in-plane eigenvalues and eigenvectors,
and the problem is reduced to the study of the eigensystem of the tensor

A = Aep
11(k1 ⊗ k1) +Aep

12(k1 ⊗ k2) +Aep
21(k2 ⊗ k1) +Aep

22(k2 ⊗ k2), (5.22)

where, without loss of generality, we can take k1,k2 ∈ R2. The eigenvalues
are

aep
1,2 =

Aep
11 +Aep

22 ± ∆
2

, (5.23)

where

∆ =
[
(Aep

11 −Aep
22)

2 + 4Aep
12A

ep
21

]1/2
. (5.24)

Assuming that the eigenvalues are real and distinct the spectral representation
of A is

A = aep
1 (v1 ⊗ w1) + aep

2 (v2 ⊗ w2), (5.25)

where {v1,v2} and {w1,w2} are dual bases, i.e. satisfying vi · wj = δij (i,j =
1,2), composed of right eigenvectors and left eigenvectors, respectively. This
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basis may be calculated from

v1 = k1 +
∆ − (Aep

11 −Aep
22)

2Aep
12

k2,

v2 = k1 +
−∆ − (Aep

11 −Aep
22)

2Aep
12

k2,

w1 =
∆ + (Aep

11 −Aep
22)

2∆
k1 +

Aep
12

∆
k2,

w2 =
∆ − (Aep

11 −Aep
22)

2∆
k1 − Aep

12

∆
k2,

(5.26)

which hold for Aep
12 �= 0, or from

v1 =
∆ + (Aep

11 −Aep
22)

2Aep
21

k1 + k2,

v2 =
−∆ + (Aep

11 −Aep
22)

2Aep
21

k1 + k2,

w1 =
Aep

21

∆
k1 +

∆ − (Aep
11 −Aep

22)
2∆

k2,

w2 = −A
ep
21

∆
k1 +

∆ + (Aep
11 −Aep

22)
2∆

k2,

(5.27)

which hold for Aep
21 �= 0, or from

v1 = k1 +
∆ − (Aep

11 −Aep
22)

2Aep
12

k2,

v2 =
−∆ + (Aep

11 −Aep
22)

2Aep
21

k1 + k2,

w1 =
∆ + (Aep

11 −Aep
22)

2∆
k1 +

Aep
12

∆
k2,

w2 = −A
ep
21

∆
k1 +

∆ + (Aep
11 −Aep

22)
2∆

k2,

(5.28)

which hold for Aep
12 �= 0 and Aep

21 �= 0.
Therefore, assuming aep

1 �= 0 and aep
2 �= 0, the inverse of A is

A−1 =
1
aep

1

(v1 ⊗ w1) +
1
aep

2

(v2 ⊗ w2). (5.29)
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For ∆ → 0 (coalescence of the eigenvalues), the tensor A becomes defective
(apart from the trivial case where A is isotropic) and each term in the spectral
representation of A, and also of A−1, blows up but A−1 continues to exist
and to be defined correctly. Indeed a substitution of eqns. (5.23) and (5.26)
(or (5.27), or (5.28)) into eqn. (5.29) leads to

A−1 =
1

Aep
11A

ep
22 −Aep

12A
ep
12

[Aep
22(k1 ⊗ k1) −Aep

12(k1 ⊗ k2) (5.30)

−Aep
21(k2 ⊗ k1) +Aep

11(k2 ⊗ k2)] .

5.4 Dynamic Green’s function for the time-harmonic case

We consider an initial static deformation, x = χ(ξ), of a homogeneous body
Ω0, which satisfies:

Sij,j = 0, ξ ∈ Ω0. (5.31)

(in fact we will take Sij to be uniform, that is constant over Ω0), and then we
perform a dynamic perturbation of the form:

Sij → Sij + δSij(ξ, t),

xi(ξ) → xi(ξ) + δxi(ξ, t),
(5.32)

Now we can write the incremental constitutive equations (5.5)–(5.6) in the
form:

δSij = Cijklδxk,l, ξ ∈ Ω0, t ∈ I, (5.33)

where the operator δ is used to denote an incremental quantity, instead of
the superscript dot. The equations of motion for the considered dynamic
perturbation are:

(Sij + δSij),j + fi = ρ0(ẍi + δẍi), ξ ∈ Ω0, t ∈ I, (5.34)

which, in view of the fact that Sij is uniform and the initial deformation xi is
static, simplify to:

δSij,j + fi = ρ0δẍi, ξ ∈ Ω0, t ∈ I. (5.35)

Combining (5.33) and (5.34) we get the equation of motion in the form:

(Cijklδxk,l),j + fi = ρ0δẍi, ξ ∈ Ω0, t ∈ I. (5.36)



5.4. Dynamic Green’s function for the time-harmonic case 101

For a homogeneus body Cijkl are constant, then (5.36) reduces to:

Cijkluk,lj + fi = ρ0üi, ξ ∈ Ω0, t ∈ I, (5.37)

writing ui for δxi.
Equations (5.36) and (5.37) look like ordinary elastodynamics, except that

Cijkl does not have the symmetries usually assumed. The basic question now
is to investigate the properties of eqn. (5.37), close to the flutter condition.
The approach adopted here is to find the dynamic Green’s function. Limiting
the analysis to the time-harmonic case,

ui = ûi(ξ)e−iωt, fi = f̂i(ξ)e−iωt,

we can remove the time dependence from eqn. (5.37) and get it in the form:

Cijklûk,lj + ρ0ω
2ûi + f̂i = 0, ξ ∈ Ω0. (5.38)

The Green’s tensor ûi = Gip(ξ) corresponds to choosing f̂i = δipδ(ξ), thus we
obtain

CijklGkp,lj(ξ) + ρ0ω
2Gip(ξ) + δipδ(ξ) = 0, ξ ∈ Ω0. (5.39)

It is possible now to employ an updated Lagrangian formulation so that the
reference state is the deformed state. Then writing x instead of ξ:

CijklGkp,lj(x) + ρ0ω
2Gip(x) + δipδ(x) = 0, x ∈ Ω. (5.40)

5.4.1 Plane wave expansion of the delta function

In order to approach the flutter condition, we exploit the analysis of the
acoustic tensor developed for the planar problem in Section 5.3, considering
an infinite medium subject to plane strain conditions,


G1p = G1p(x1, x2),

G2p = G2p(x1, x2),

G3p = 0,

(5.41)

so that i, j, k, l, p in eqn. (5.40) range now between 1 and 2, and x ∈ R2.
The plane wave expansion of the δ function is:

δ(x) = − 1
4π2

∫
|n|=1

1
(n · x)2

ds, (5.42)
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where n is the unit vector, so that defining the analogous transform G̃(n · x)
of the Green tensor G(x) as

G(x) = − 1
4π2

∫
|n|=1

G̃(n · x)ds, (5.43)

the transform of eqn. (5.40) leads to

CijklnjnlG̃
′′
kp(ξ) + ρ0ω

2G̃ip(ξ) +
δip
ξ2

= 0, (5.44)

where ξ = n · x. In this equation the acoustic tensor can be easily recognized,
Aik = Cijklnjnl, so that we get

A(n)G̃
′′
(ξ) + ρ0ω

2G̃(ξ) +
1
ξ2

I = 0. (5.45)

Let us assume that A(n) has two real, distinct, positive eigenvalues ρ0c
2
N

and left and right eigenvectors wN , vN , (N = 1, 2). We can choose the
vectors wN , vN as dual basis vectors, i.e. vN · wM = δNM , (N,M = 1, 2).
The spectral representations of A(n) and I are therefore

A(n) =
2∑

N=1

ρ0c
2
NvN ⊗ wN and I =

2∑
N=1

vN ⊗ wN , (5.46)

respectively. Writing now

G̃(ξ) =
2∑

N=1

φN (ξ)vN ⊗ wN , (5.47)

we get eqn. (5.45) in the form

2∑
N=1

(
ρ0c

2
Nφ

′′
N + ρ0ω

2φN +
1
ξ2

)
vN ⊗ wN = 0, (5.48)

which is equivalent to the following uncoupled system of two equations,

φ′′N + k2
NφN +

1
ρ0c2N

1
ξ2

= 0, N = 1, 2 (5.49)

where kN = ω/cN .
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The sole phisically meaningful solution of the ordinary differential equation
(5.49) is obtained by imposing the radiation condition, which states that the
solution should consist only of waves propagating away from the source, the
so-called outgoing waves. Since we have chosen the harmonic time dependence
to be of the form e−iωt, the outgoing wave solution of (5.49) in the ξ coordinate
is:

φN (ξ) =
1

2ρ0c
2
N

[2Ci(kN |ξ|) cos(kN ξ) (5.50)

+ 2Si(kN ξ) sin(kN ξ) − i π cos(kN ξ)] ,

where

Ci(x) = −
∫ +∞

x

cos t
t
dt, x > 0 and Si(x) =

∫ x

0

sin t
t
dt

are the cosine and sine integral functions, respectively. Finally, the antitrans-
form of eqn. (5.47) coupled with eqn. (5.50) leads to

G(x) = − 1
8π2

2∑
N=1

∫
|n|=1

[2 cos(kNn · x)Ci(kN |n · x|) (5.51)

+ 2 sin(kNn · x) Si(kNn · x) − i π cos(kNn · x)]
vN ⊗ wN

ρ0c
2
N

ds.

5.4.2 Radon transform

In this section we obtain the Green’s function following a different approach,
namely the Radon transform technique. The Radon transform of a function
f(x), x ∈ R2 is defined as

R [f(x)] = f̂(p,n) =
∫
R2

f(x)δ(p − n · x) dx, p ∈ R, n ∈ R2 (5.52)

with the inverse

f(x) =
1

4π2

∫
|n|=1

P.V.
∫ +∞

−∞

f̂p(p,n)
(n · x − p)

dp ds, (5.53)

where the notation with a subscript variable denotes partial differentiation
with respect to that variable:

f̂p(p,n) =
∂f̂(p,n)
∂p

. (5.54)

We will make use of the following properties of the Radon transform:
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• linearity

R [c1f1(x) + c2f2(x)] = c1R [f1(x)] + c2R [f2(x)] , (5.55)

• derivative transform

R [f,j(x)] = nj f̂p(p,n),

R [f,lj(x)] = nlnj f̂pp(p,n),
(5.56)

• transform of the two-dimensional Dirac delta function

R [δ(x)] = δ(p). (5.57)

The Radon transform of eqn. (5.40) is therefore

CijklnlnjĜ
′′
kp(p,n) + ρ0ω

2Ĝip(p,n) + δipδ(p) = 0, (5.58)

where

Ĝ′′
kp(p,n) =

∂ 2

∂p 2
Ĝkp(p,n). (5.59)

Eqn. (5.58) can be rewrite in matrix form as

A(n)Ĝ
′′
(p,n) + ρ0ω

2Ĝ(p,n) + δ(p)I = 0. (5.60)

Now, using the spectral representations of A(n) and I in eqns. (5.46) and
writing

Ĝ(p,n) =
2∑

N=1

φN (p,n)vN ⊗ wN , (5.61)

we get
2∑

N=1

[
ρ0c

2
Nφ

′′
N + ρ0ω

2φN + δ(p)
]
vN ⊗ wN = 0, (5.62)

which is equivalent to the following uncoupled system of two equations,

φ′′N + k2
NφN +

1
ρ0c2N

δ(p) = 0, N = 1, 2. (5.63)

Since we have chosen the harmonic time dependence to be of the form e−iωt,
the outgoing wave solution of (5.63) in the p coordinate is:

φN (p,n) = − eikN |p|

2ρ0ikNc2N
, (5.64)
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so that

Ĝ(p,n) = −
2∑

N=1

eikN |p|

2ρ0ikN c2N
vN ⊗ wN . (5.65)

and

Ĝp(p,n) = −
2∑

N=1

sgn(p)eikN |p|

2ρ0c2N
vN ⊗ wN . (5.66)

The antitransform of equation (5.65) leads to

G(x) = − 1
4π2

2∑
N=1

∫
|n|=1

∫ +∞

−∞

sgn(p)eikN |p|

2ρ0c2N (n · x − p)
vN ⊗ wN dp ds. (5.67)

The integral in the variable p can be evaluated splitting the domain as follows∫ +∞

−∞

sgn(p)eikN |p|

ξ − p
dp = −

∫ 0

−∞

e−ikNp

ξ − p
dp+

∫ +∞

0

eikN p

ξ − p
dp, (5.68)

so that we can treat the two integrals separately, namely

−
∫ 0

−∞

e−ikNp

ξ − p
dp = −e−ikN ξ

∫ +∞

kN ξ

eiq

q
dq, (5.69)

where we have made the substitution q = kN (ξ − p), and∫ +∞

0

eikN p

ξ − p
dp = −eikN ξ

∫ +∞

−kN ξ

eiq

q
dq, (5.70)

where we have made the substitution q = kN (p − ξ). Finally, the expansion
of the exponential function,

eiq = cos q + i sin q,

allows us to conclude and get the Green’s function in the form

G(x) = − 1
8π2

2∑
N=1

∫
|n|=1

[2 cos(kNn · x)Ci(kN |n · x|) (5.71)

+ 2 sin(kNn · x) Si(kNn · x) − i π cos(kNn · x)]
vN ⊗ wN

ρ0c2N
ds.
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5.4.3 Convergence of the Green’s function

It can be noted that cos(·) and sin(·) Si(·) are even functions, so that we can
write

G(x) = − 1
8π2

2∑
N=1

∫
|n|=1

[2 cos(kN |n · x|)Ci(kN |n · x|) (5.72)

+ 2 sin(kN |n · x|) Si(kN |n · x|) − i π cos(kN |n · x|)] vN ⊗ wN

ρ0c
2
N

ds.

which may be expanded to yield

G(x) = − 1
8π2

2∑
N=1

∫ 2π

0
[2 cos(rkN |cosα|)Ci(rkN |cosα|) (5.73)

+ 2 sin(rkN |cosα|) Si(rkN |cosα|) − i π cos(rkN |cosα|)] vN ⊗ wN

ρ0c2N
dα,

where the distance r = |x| and the angle θ are polar coordinates, α is the
angle between the two vectors x and n. It is easy to show that the integrand
is a periodic function with period π. The function |cosα| is a periodic function
with period π,

|cos(α+ nπ)| = |(−1)ncosα| = |cosα|. (5.74)

The functions cN (α), kN (α), vN (α), and wN (α) are periodic functions with
period π, since the acoustic tensor itself is a periodic function with period π,

Aik = Cijklnjnl (5.75)

= φik(n2
1, n

2
2, n1n2) (5.76)

= φik(cos2(α+ θ), sin2(α+ θ), cos(α+ θ)sin(α+ θ)) (5.77)

= φ̃ik(cos[2(α + θ)], sin[2(α + θ)]). (5.78)

So that

G(x) = − 1
4π2

2∑
N=1

∫ π

0
[2 cos(rkN |cosα|)Ci(rkN |cosα|) (5.79)

+ 2 sin(rkN |cosα|) Si(rkN |cosα|) − i π cos(rkN |cosα|)] vN ⊗ wN

ρ0c2N
dα.
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It can be noted that the integrand has a singularity at α = π/2, in fact

Ci(0+) = −∞. (5.80)

Since all the other quantities in the integrand are limited, we can restrict our
attention to ∫ π

0
Ci(rkN |cosα|) dα. (5.81)

The singularity can be analyzed using the formula

Ci(x) = γ + log x−
∫ x

0

1 − cos t
t

dt, (5.82)

where γ is the Euler’s constant. This formula leads us to the study of∫ π

0
log |cosα| dα, (5.83)

which may easily be shown to converge, indeed∫ π

0
log |cosα| dα = 2

∫ π/2

0
log(cosα) dα = −π log 2. (5.84)

5.4.4 The solution for a generic point load

Since the perturbation problem is linear, the solution pertaining to a generic
point load can be obtained as the superposition of the solutions for two forces,
one acting along axis 1 and the other along axis 2,


u1(x) = f1G11(x − x0) + f2G12(x − x0),

u2(x) = f1G21(x − x0) + f2G22(x − x0),
(5.85)

where x0 is the application point and f1, f2 the components of the load. Using
polar coordinates 


u1(r, θ) = f1G11(r̂, θ̂) + f2G12(r̂, θ̂),

u2(r, θ) = f1G21(r̂, θ̂) + f2G22(r̂, θ̂),
(5.86)

where 


r̂ =
√
r2 + r20 − 2rr0 cos(θ − θ0),

θ̂ = tan−1 r cos θ − r0 cos θ0
r sin θ − r0 sin θ0

,

(5.87)

in which r, θ and r0, θ0 are the polar coordinates of x and x0 respectively.
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5.5 Results

5.5.1 Normalization

Introducing any characteristic length a, we can normalize the following equa-
tion

Cijkl
∂2Gkp(x)
∂xj∂xl

+ ρ0ω
2Gip(x) + δipδ(x) = 0, x ∈ R2 (5.88)

by writing it in terms of the dimensionless quantities x̄ = x/a and Ḡ(x̄) =
µG(ax̄) as follows

C̄ijkl
∂2Ḡkp(x̄)
∂x̄j∂x̄l

+ ω̄2Ḡip(x̄) + δipδ(x̄) = 0, x̄ ∈ R2 (5.89)

where

C̄ijkl =
Cijkl

µ
, ω̄ = a

√
ρ0

µ
ω, (5.90)

and we have made use of the property

δ(ax̄) =
1
a2
δ(x̄), x̄ ∈ R2. (5.91)

Thus, the dimensionless Green tensor reads

Ḡ(x̄) = − 1
8π2

2∑
N=1

∫
|n|=1

[
2 cos(k̄Nn · x̄)Ci(k̄N |n · x̄|) (5.92)

+ 2 sin(k̄Nn · x̄) Si(k̄Nn · x̄) − i π cos(k̄Nn · x̄)
] vN ⊗ wN

c̄2N
ds,

where

k̄N = akN =
ω̄

c̄N
, c̄N =

√
ρ0

µ
cN , (5.93)

so that c̄2N are the eigenvalues of the dimensionless acoustic tensor Ā = A/µ.

5.5.2 Green’s tensor

In this section we analyze the singular solution previously obtained.
As a reference we consider the case shown in Fig. 5.9, in which the material

is subject to uniaxial traction, σ1/µ = 1, σ2 = σ3 = 0, and the direction
of the axis of elastic symmetry is inclined at θσ = 15◦ with respect to the
stress principal direction k1. The material parameters are λ/µ = 1, b̂ = 80◦,
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ψ = 30◦, and χ = 0◦. The Green’s tensor components have been computed for
ω̄ = a

√
ρ0/µω = 1 and for three values of the plastic modulus H/µ, namely

3, 2, and 1.23, in order to approach the onset of flutter.
The results are plotted along radial lines inclined at θ = 0, 45, 90,−14.56◦

with respect to the axis x1, in Figs. 5.11, 5.12, 5.13, 5.14, respectively.

5.5.3 Dipole

The singular solution previously obtained can be used to analyze the effects
of a perturbation superimposed upon a given homogeneus deformation of an
infinite body. The simplest self-equilibrated perturbation is a dipole, corre-
sponding to two equal and opposite forces. In particular we consider two
equal and opposite unit forces acting at a distance 2a and inclined at β = 45◦

with respect to axis x1, as shown in Fig. 5.10. For this loading system, the

x1

x2

b

a

Figure 5.10: Geometry of the dipole.

displacements components u1 and u2 have been computed.
Once again we refer to the case shown in Fig. 5.9. Solutions have been

calculated for ω̄ = a
√
ρ0/µω = 1 and for three values of the plastic modulus

H/µ, namely 3, 2, and 1.23, in order to approach the onset of flutter. The
results are plotted along radial lines inclined at θ = 0, 45, 90,−14.56◦ with
respect to the axis x1, in Figs. 5.15 and 5.16.

These figures clearly show that the response of the infinite body to the
dynamic perturbation remains bounded and the flutter instability remains
undetected until the eigenvalues lie in the real range. Figures 5.17 and 5.18
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show the level sets of displacement component u1 and u2, respectively.

5.5.4 An evidence of flutter instability in the complex range

So far flutter instability has been investigated restricting the analysis to the
situation in which the eigenvalues of the acoustic tensor are still real and
approaching the onset of the instability, which corresponds to the coalescence
of two eigenvalues. It has been shown that the response of an infinite body to
a dynamic perturbation remains bounded and the flutter instability remains
undetected until the eigenvalues lie in the real range, while a blow-up of the
solution is expected within the complex range.

In order to gain some insight and substantiate this claim, a study of flutter
instability in the complex range has been carried out, employing the solution
obtained in the real range.

We refer again to the case shown in Fig. 5.9. Solutions have been calculated
for ω̄ = a

√
ρ0/µω = 1 and for three values of the plastic modulus H/µ,

namely 1.23, 0.4, and 0.32, the first of which corresponds to a situation close
to the onset of flutter, but still in the real range, whereas the other two values
have been selected in order to have two complex conjugate eigenvalues of the
acoustic tensor. In particular, two eigenvalues are complex conjugate in the
range of directions −17.16◦ < θn < −10.34◦ for H/µ = 0.4, and −17.10◦ <
θn < −10.79◦ for H/µ = 0.32. The results are plotted along radial lines
inclined at θ = 0, 45, 90,−14.56◦ with respect to the axis x1, in Figs. 5.19 and
5.20.

It can be noted that the solutions corresponding to H/µ = 0.4 and H/µ =
0.32 blow up with distance along the radial lines inclined at θ = 0◦ and
θ = −14.56◦, whereas they seem to remain bounded along the radial lines
inclined at θ = 45◦ and θ = 90◦, at least for the range of distance ana-
lyzed, which is 0 < r/a < 25. This suggest that flutter phenomena present
well-defined directional properties, that will be important to investigate. The
knowledge of the directionality of flutter will in fact shed light on its mechan-
ical interpretation.



5.5. Results 111

0 4 8 12 16 20

r a/

-0.4

0

0.4

0.8

1.2

m
G
1
1

0 4 8 12 16 20

r a/

-0.4

0

0.4

0.8

1.2

m
G
1
1

0 4 8 12 16 20

r a/

-0.2

-0.1

0

0.1

0.2

m
G
2
1

0 4 8 12 16 20

r a/

-0.2

-0.1

0

0.1

0.2

m
G
2
1

0 4 8 12 16 20

r a/

-0.2

-0.1

0

0.1

0.2

m
G
1
2

0 4 8 12 16 20

r a/

-0.2

-0.1

0

0.1

0.2

m
G
1
2

0 4 8 12 16 20

r a/

-0.2

0

0.2

0.4

m
G
2
2

0 4 8 12 16 20

r a/

-0.2

0

0.2

0.4

m
G
2
2

real part imaginary part

H/m = 3

H/m = 1.23

H/m = 1.23 H/ = 1.23m

H/m = 1.23 H/m = 1.23

H/m = 2

H/m = 1.23

H/m = 3

H/m = 2

H/m = 1.23

H/m = 3

H/m = 2

H/m = 1.23

H/m = 2

H/m = 3

H/m = 2

H/m = 3

H/ = 2m

H/ = 3m

H/m = 2

H/m = 3

H/m = 2

H/m = 3

Figure 5.11: Dimensionless Green’s tensor components along axis x1, θ = 0◦. The onset
of flutter is approached as the plastic modulus H/µ decreases.
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Figure 5.12: Dimensionless Green’s tensor components along a radial line inclined at
θ = 45◦. The onset of flutter is approached as the plastic modulus H/µ decreases.
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Figure 5.13: Dimensionless Green’s tensor components along axis x2, θ = 90◦. The onset
of flutter is approached as the plastic modulus H/µ decreases.
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Figure 5.14: Dimensionless Green’s tensor components along a radial line inclined at
θ = −14.56◦. The onset of flutter is approached as the plastic modulus H/µ decreases.
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Figure 5.15: Dimensionless displacement components along axis x1, θ = 0◦, and along
a radial line inclined at θ = 45◦, for a dipole inclined at β = 45◦. The onset of flutter is
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The onset of flutter is approached as the plastic modulus H/µ decreases.



5.5. Results 119

r a/

m
u
1

r a/

m
u
1

real part imaginary part

H/m = 0.32

r a/

m
u
2

r a/

m
u
2

r a/

m
u
2

r a/

m
u
2

r a/

m
u
1

r a/

m
u
1

� = 0°

� = 45°

H/m = 0.4

H/m = 1.23

0 5 10 15 20 25

-2

-1

0

1

2

3

0 5 10 15 20 25

-4

-2

0

2

4

6

0 5 10 15 20 25

-3

-2

-1

0

1

2

0 5 10 15 20 25

-4

-2

0

2

4

6

0 5 10 15 20 25

-0.4

0

0.4

0.8

1.2

0 5 10 15 20 25

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 5 10 15 20 25

-0.8

-0.4

0

0.4

0.8

0 5 10 15 20 25

-0.8

-0.4

0

0.4

0.8

H/m = 0.32

H/m = 0.4

H/m = 1.23

H/m = 0.32

H/m = 0.4

H/m = 1.23

H/m = 0.32

H/m = 0.4

H/m = 1.23

H/m = 0.32

H/m = 0.4

H/m = 1.23

H/m = 0.32

H/m = 0.4

H/m = 1.23

H/m = 0.32

H/m = 0.4

H/m = 1.23

H/m = 0.32

H/m = 0.4

H/m = 1.23
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Zeuch, D.H., Grazier, J.M., Argüello, J.G. and Ewsuk, K.G. (2001) Mechan-
ical properties and shear failure surfaces for two alumina powders in triaxial
compression. J. Mater. Sci. 36, 2911-2924.


