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Abstract

Two classes of non-linear elastic materials are derived via two-dimensional homogenization.
These materials are equivalent to a periodic grid of axially-deformable and axially-preloaded
structural elements, subject to incremental deformations that involve bending, shear, and nor-
mal forces. The unit cell of one class is characterized by elements where deformations are
lumped within a finite-degrees-of-freedom framework. In contrast, the other class involves
smeared deformation, modelled as flexurally deformable rods with sufficiently high axial com-
pliance. Under increasing compressive load, the elasticity tensor of the equivalent material
loses positive definiteness and subsequently undergoes an ellipticity loss. Remarkably, in cer-
tain conditions, this loss of stability is followed by a subsequent restabilization; that is, the
material re-enters the elliptic regime and even the positive definiteness domain and simulta-
neously, the underlying elastic lattice returns to a stable state. This effect is closely related to
the axial compliance of the elements.

The lumped structural model is homogenized using a purely mechanical approach (whose
results are also confirmed via formal homogenization based on variational calculus), resulting
in an analytical closed-form solution that serves as a reference model. Despite its simplicity, the
model exhibits a surprisingly rich mechanical behaviour. Specifically, for certain radial paths
in stress space: (i.) stability is always preserved; (ii.) compaction, shear, and mixed-mode
localization bands emerge; (iii.) shear bands initially form, but later ellipticity is recovered,
and finally, mixed-mode localization terminates the path. This lumped structural model is (at
least in principle) realizable in practice and offers an unprecedented and vivid representation
of strain localization modes, where the corresponding equations remain fully ‘manageable by
hand’. The structural model with smeared deformability behaves similarly to the discrete
model but introduces a key distinction: ‘islands’ of instability emerge within a broad zone
of stability. This unique feature leads to unexpected behaviour, where shear bands appear,
vanish and reappear along radial stress paths originating from the unloaded state.

Our results: (i.) demonstrate new possibilities for exploiting structural elements within
the elastic range, characterized by a finite number of degrees of freedom, to create architected
materials with tuneable instabilities, (ii.) introduce reconfigurable materials characterized by
‘islands’ of stability or instability.

Keywords Lattice materials · Material instability · Homogenization

1 Introduction
Sufficiently high axial compliance has been shown to induce restabilization in an elastic rod sus-
ceptible to Euler buckling [1–4]. The basic mechanics behind this behaviour is simple: the critical
load for the bifurcation of an axially-compressed rod is inversely proportional to the square of its
length. Thus, axial deformation reduces the rod’s length, resulting in a stabilizing effect. Rods
undergoing significant length variation have attracted renewed interest, especially in deployable
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structures (for instance, booms, antennas, and solar arrays spacecraft [5]) and soft robot arms,
where configurational forces often play a role [6].

This article extends the concept of restabilization, previously known only in structural mechan-
ics, to elastic solids. The proof-of-concept model, illustrated in Fig. 1, demonstrates this idea. The
model consists of a rectangular lattice made up of axially deformable but otherwise rigid bars,
connected by elastic hinges that condense the shear deformability.

Fig. 1. The proof-of-concept model (left) is an architected material showing restabilization, when subject to
increasing compressive prestress. Restabilization occurs both in the structure and in an equivalent elastic continuum.
The structural elements are axially deformable, but flexurally rigid, and are connected through elastic hinges,
permitting shear deformation (right).

The lattice is doubly periodic, infinite in extent, and preloaded with vertical and horizontal
forces, leading to a state where only axial internal forces are present. A global bifurcation corre-
sponding to a shear band mode occurs at sufficiently high compressive loads. This lattice serves as a
conceptual model for an architected material that can be made equivalent to an elastic, prestressed
solid. The explicit determination of the equivalent elasticity tensor (performed via purely mechan-
ical considerations and confirmed through rigorous homogenization based on variational calculus),
characterizing the incremental response of the material equivalent to the lattice for every combina-
tion of biaxial prestress, enables the analysis of stability criteria such as positive definiteness (PD),
strong ellipticity (SE), and ellipticity (E). These analyses indisputably demonstrate instability fol-
lowed by restabilization within certain regions of the stability map, revealing ‘islands of stability
in a sea of instability’.

Surprisingly, the essential mechanical model illustrated in Fig. 1 reveals a rich mechanical
behaviour and provides a vivid example of ellipticity loss, which is per se interesting, showing the
emergence of shear band modes, compaction bands, and mixed-mode localizations.
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To ensure these findings are not limited to discrete lattices with a finite number of degrees of
freedom, the study is complemented by a demonstration of restabilization through the homogeniza-
tion of a periodic lattice comprising axially and flexurally deformable elastic rods. This approach
extends previous results [7] to include substantial axial compliance. The analysis of this new struc-
ture reveals two novel and unexpected features: (i) islands of instability now emerge within a stable
zone, and consequently, (ii) shear bands may appear, disappear, and finally reappear along a radial
stress path originating from the null stress state. Fig. 2 illustrate this phenomenon: starting from
a stable configuration and following a compressive radial path, deformation localization initially
emerges as a vertical shear band near pE , corresponding to the first loss of (SE); as the compressive
load increases beyond pE , the material re-enters a stable regime, causing the shear band to fade;
further compression induces strain localization to reappear in the form of a mixed mode.

Fig. 2. Displacement maps at radially increasing compressive prestress p, along a radial path emanating from the
unloaded state. The maps are obtained by applying a perturbative dipole to an elastic material equivalent to a
square grid of axially prestressed elastic rods (see Section 6.1 for the details). From left to right: (i.) initially, shear
bands are not present, and the (SE) condition holds; (ii.) a vertical shear band occurs when the (SE)-(Parabolic)
boundary is grazed; (iii.) the shear band disappears, and the material is fully restabilized; (iv.) finally, two inclined
shear bands emerge when the (SE)-(Hyperbolic) boundary is approached. Note that the shear bands are approached
two times while the entire stress path remains inside the (SE) regime.

It is important to note that the restabilization observed in the present article differs from that
reported in [8]. The latter reflects a sort of ‘discrepancy’ in the homogenization result, where the
solid recovers stability while the underlying lattice remains unstable. This phenomenon is related
to the well-established fact that (SE) in the equivalent solid is unaffected by the occurrence of
microscopic bifurcations in the lattice [9–11].

Our results reveal a complex interplay of instabilities and offer insights for designing materials
where stability loss and recovery can be explicitly engineered while maintaining a clear mechanical
interpretation. This suggests the possibility of developing materials capable of operating in a
stable regime at loads exceeding the first critical load in a vein similar to supercritical driveshafts
functioning at speeds higher than their natural critical frequency.

The article is organized as follows. Section 2 introduces a straightforward technique for homoge-
nizing the proof-of-principle structure shown in Fig. 1, determining the equivalent elastic solid. For
this solid, the (PD) and (SE) stability conditions are also derived. Section 3 presents a comprehen-
sive analysis of the unit cell, viewed as a repeating unit that spans the entire plane and generates
the periodic structure. The unit cell is subjected to general displacement fields. The equivalent of
the (PD) condition for the solid is obtained for the elastic grid, and the two conditions are shown
to coincide. A stricter exclusion condition than (PD) is also derived for the discrete structure
under uniform prestress, using the Floquet-Bloch wave representation of the displacement field.
This condition reduces to the (SE) condition for the solid when considering infinite wavelengths,
thereby highlighting both the strengths and limitations of the homogenization process. A formal
homogenization algorithm, based on variational calculus and Gamma-convergence, is presented in
Section 4, demonstrating that the results derived from purely mechanical principles are rigorous.
More generally, the formal proof leads to the acoustic tensor of the homogenized material and is
thus analogous to the dynamic asymptotic homogenization technique developed in [7]. Section 5
provides examples demonstrating restabilization in terms of both (PD) and (SE). These examples
illustrate scenarios where the strongly elliptic boundary is punctured up to three times, document-
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ing the occurrence of shear, compaction bands and mixed-mode localization. Finally, Section 6
concludes the article by introducing a lattice composed of axially and flexurally deformable elas-
tic rods. The homogenization of this lattice and its related results are discussed, showcasing the
phenomena of ’instability islands,’ along with the emergence, disappearance, and reemergence of
localization.

2 Homogenization of the proof-of-concept model
A proof-of-concept mechanical model is established, consisting of axially deformable (with stiff-
nesses kx and ky) but flexurally rigid elements that form the rectangular (periodic and infinite) grid
shown in Fig. 1 in an axonometric view and Fig. 3 in a front view, with the unit cell highlighted.
The bars, with lengths l0x and l0y in the undeformed configuration, are elastically hinged together
(with stiffness ko).

Fig. 3. Front view of Fig. 1, showing the unit cell and a portion of the lattice that forms the proof-of-concept
model showing restabilization of an equivalent elastic continuum when subject to increasing compressive prestress.
The elements are axially deformable but otherwise rigid and are interconnected through elastic hinges.

2.1 Homogeneous deformation of the grid and the equivalent continuum
For any linear displacement field, the grid is constrained to deform uniformly, reducing its degrees
of freedom from 10 to 4: the two elongations of horizontal and vertical bars, d1 = d3 = dx, and
d2 = d4 = dy, along with two inclination angles, α1 = α3 = α, and α2 = α4 = −β. In the reference
system e1–e2, the deformed configuration of the unit cell, when subject to vertical and horizontal
forces P1, Q1 and P2, Q2, is shown in Fig. 4. The half-lengths of the bars defining the unit cell
become lx/2 and ly/2, satisfying

lx = l0x + dx, ly = l0y + dy. (1)

Noting that the half-springs pertaining to the unit cell have stiffnesses 2kx and 2ky in the
horizontal and vertical bars, respectively, the total potential energy in the deformed configuration
is

W = 2ko(α+ β)2 + 2kx

(
dx
2

)2

+ 2ky

(
dy
2

)2

+ P1l
0
x

[
1−

(
1 +

dx
l0x

)
cosα

]
+ P2l

0
y

[
1−

(
1 +

dy
l0y

)
cosβ

]
−Q1l

0
x

(
1 +

dx
l0x

)
sinα−Q2l

0
y

(
1 +

dy
l0y

)
sinβ. (2)
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Fig. 4. The deformation of the unit cell, associated with a linear displacement field, which corresponds to a uniform
strain used for homogenization. Note that the stiffnesses pertaining to one half of a longitudinal spring are 2kx and
2ky .

2.1.1 Equilibrium

The stationarity of W with respect to α, β, dx, and dy leads to the equilibrium equations

4
ko
l0x

(α+ β) + P1

(
1 +

dx
l0x

)
sinα−Q1

(
1 +

dx
l0x

)
cosα = 0,

4
ko
l0y
(α+ β) + P2

(
1 +

dy
l0y

)
sinβ −Q2

(
1 +

dy
l0y

)
cosβ = 0,

kxdx − P1 cosα−Q1 sinα = 0,

kydy − P2 cosβ −Q2 sinβ = 0.

(3)

With reference to a unit cell enclosing the deformed configuration shown in Fig. 4, the Cauchy,
Tij , and Piola-Kirchhoff, Sij , stresses can be introduced as

T11 =
P1

ly
, T12 =

Q2

lx
, T21 =

Q1

ly
, T22 =

P2

lx
,

S11 =
P1

l0y
, S12 =

Q2

l0x
, S21 =

Q1

l0y
, S22 =

P2

l0x
,

(4)

and the equilibrium equations (3) can be rewritten as

4
ko
l0xl

0
y

(α+ β) + S11

(
1 +

dx
l0x

)
sinα− S21

(
1 +

dx
l0x

)
cosα = 0,

4
ko
l0xl

0
y

(α+ β) + S22

(
1 +

dy
l0y

)
sinβ − S12

(
1 +

dy
l0y

)
cosβ = 0,

kxdx
l0y

− S11 cosα− S21 sinα = 0,

kydy
l0x

− S22 cosβ − S12 sinβ = 0.

(5)
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It is assumed that α, β, dx, dy, Tij , Sij , and thus also λx and λy are all functions of a time-like
parameter governing the deformation. Moreover, a biaxially-deformed configuration in which the
bars remain aligned parallel to their initial position is postulated, so that α = β = 0, Q1 = Q2 = 0,
thus S12 = S21 = 0. In this situation, equations (5) allow to relate the stretches

λ1 =
lx
l0x
, λ2 =

ly
l0y
, (6)

to the prestress as

λ1 = 1 +
S11l

0
y

kxl0x
, λ2 = 1 +

S22l
0
x

kyl0y
. (7)

The continuum equivalent to the biaxially stretched discrete structure is subject to a uniform
prestretch characterized by the principal stretches λ1 and λ2, eqns. (6), so that the deformation
gradient F and its determinant J are

[F ] =

[
λ1 0
0 λ2

]
, J = λ1λ2, (8)

and the validity of the relation S = JTF−T can easily be checked.

2.1.2 Incremental equilibrium

The incremental equilibrium equations corresponding to eqs. (5) are

S′
11 =

kxḋx
l0y

, S′
12 =

4ko
l0xl

0
y

α̇+ β̇

λ2
+ S22β̇,

S′
21 =

4ko
l0xl

0
y

α̇+ β̇

λ1
+ S11α̇, S′

22 =
kyḋy
l0x

,

(9)

where a superimposed dot denotes increments, while an increment in S is indicated with a dash,
S′
ij . It should be noted from eq. (9) that S′

12 is different from S′
21, except when the prestress is

null, S11 = S22 = 0.
The incremental equations relating incremental nominal stresses S′

ij to the incremental defor-
mation governed by α̇, β̇, ḋx, ḋy can also be expressed as functions of the sole prestress components
S11 and S22 in the form

S′
11 =

kxḋx
l0y

, S′
12 =

4ko
l0xl

0
y

α̇+ β̇

1 +
S22l0x
kyl0y

+ S22β̇,

S′
21 =

4ko
l0xl

0
y

α̇+ β̇

1 +
S11l0y
kxl0x

+ S11α̇, S′
22 =

kyḋy
l0x

.

(10)

A prestressed elastic solid, governed by an incremental constitutive equation relating the increment
of the first Piola-Kirchhoff stress S′

ij to the incremental deformation gradient F ′
h,k,

S′
ij = GijhkF

′
hk, (11)

can be made equivalent to the incremental behaviour of the grid, equations (10), by observing the
kinematic equivalence between continuum and lattice

F11 =
lx
l0x
, F12 = 0, v1,1 =

ḋx
lx

, v1,2 = β̇, F ′
11 =

ḋx
l0x

F ′
12 = β̇

ly
l0y
,

F21 = 0, F22 =
ly
l0y
, v2,1 = α̇, v2,2 =

ḋy
ly

, F ′
21 = α̇

lx
l0x
, F ′

22 =
ḋy
l0y

,

(12)
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where the gradient of incremental deformation vi,j satisfies F ′
ik = vi,jFjk. Therefore, the elastic

fourth-order tensor of the solid equivalent to the grid (only the non-null components are reported)
becomes

G1111 =
kxl

0
x

l0y
, G2222 =

kyl
0
y

l0x
,

G1212 =
4ko

l0xl
0
yλ

2
2

+
S22

λ2
, G1221 =

4ko
l0xl

0
yλ1λ2

,

G2112 =
4ko

l0xl
0
yλ1λ2

, G2121 =
4ko

l0xl
0
yλ

2
1

+
S11

λ1
,

(13)

where the major symmetry G2112 = G1221 should be noted.
On the introduction of the Oldroyd derivative of the Kirchhoff stress, K = JT , as

◦
K= S′F T − (∇v)K, (14)

it is found that
◦
K is related to the Eulerian strain increment D = (∇v +∇vT )/2 by

◦
K= H[D], (15)

where
H1111 =

kxlx
l0y

, H2222 =
kyly
l0x

, H1212 = H2112 = H2121 = H1221 =
8ko
l0xl

0
y

, (16)

so that tensor H possesses both the major and the minor symmetries. If the bars remain of finite
length during the deformation (as it is imposed by elementary considerations), all components (16)
are strictly positive and never vanish. The constitutive tensor H defines an orthotropic material
and is positive definite.

2.1.3 Relative Lagrangean description

In a relative Lagrangian description, in which the current configuration is assumed as a reference,
the constitutive response can be written in terms of the incremental first Piola-Kirchhoff stress Ṡij

as
Ṡij = Eijhkvh,k, (17)

where

Ṡ11 = S′
11

l0y
ly
, Ṡ22 = S′

22

l0x
lx
, Ṡ12 = S′

12

l0x
lx
, Ṡ21 = S′

21

l0y
ly
, (18)

so that the relationships between the two introduced elasticity tensors are

E1111 = G1111

lxl
0
y

l0xly
, E2222 = G2222

l0xly
lxl0y

,

E1212 = G1212
l0xly
lxl0y

, E1221 = G1221

E2112 = G2112, E2121 = G2121

lxl
0
y

l0xly
,

(19)

and therefore the only non-null components of tensor E can be written as

E1111 =
kxlx
ly

, E2222 =
kyly
lx

,

E1212 =
4ko
lxly

+ T22, E1221 =
4ko
lxly

,

E2112 =
4ko
lxly

, E2121 =
4ko
lxly

+ T11.

(20)
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In a relative Lagrangian description, the Oldroyd derivative of the Kirchhoff stress equals the
material time derivative of the second Piola-Kirchhoff stress, T (2) = F−1S. Therefore, in a relative
Lagrangian description, it is possible to define a tensor H such that

Ṫ (2) = H[D], (21)

with

H1111 =
kxl

0
x

ly
, H2222 =

kyl
0
y

lx
, H1212 = H1221 = H2112 = H2121 =

4ko
lxly

. (22)

Consequently, the tensor E can be written as

E = H+ I□×T , (23)

where the tensorial product ‘□×’ is defined in such a way that for every tensor L, it is (I□×T )L =
LT T = LT .

2.1.4 The bifurcation exclusion condition: positive definiteness (PD) of the consti-
tutive tensor E

Equations (22) show that:

• The tensor H is positive definite if and only if all springs have strictly positive stiffness.

• Positive definiteness of the tensor E , called (PD), namely, L · EL > 0, holding for every
non-null L = D +W (W being the spin tensor), can be written as

E1111D2
11+E2222D2

22+4H1212D
2
12+(T1+T2)D

2
12+(T1+T2)W

2
12−2(T1−T2)D12W12 > 0, (24)

valid for every component Dij and W12, not identically null. (PD) is a condition that, when
holding at every point of a solid, excludes bifurcation of the incremental solution for any
mixed boundary condition [12].

Due to the fact that D and W are independent tensors and each of them can be set to be null
independently of the other, T1+T2 > 0 is a necessary condition for positive definiteness of E ,
together with other two trivial conditions, E1111 > 0 and E2222 > 0. The interaction between
incremental shear strain and spin is more intricate and, at fixed D12 and for T1 + T2 > 0,
requires consideration of the function

z(W12) = (T1 + T2)W
2
12 − 2(T1 − T2)D12W12, (25)

which reaches its minimum at
W̃12 =

T1 − T2

T1 + T2
D12. (26)

Therefore, the inequality

L · EL ≥ E1111D2
11 + E2222D2

22 + 4

(
H1212 +

T1T2

T1 + T2

)
D2

12, (27)

leads to the following necessary and sufficient conditions for the positive definiteness of E ,
the so-called (PD) conditions,

H1111+T1 > 0, H2222+T2 > 0, T1+T2 > 0, H1212+
T1T2

T1 + T2
> 0 ⇐⇒ (PD) (28)

ruling out the possibility of any bifurcation when holding at every point of a stressed body.
Note that: (i.) conditions (28)1 and (28)2 must be trivially satisfied, as violating either of
them would imply either the annihilation of a bar or the length becoming negative; (ii.)
condition (28)3 is purely geometric and does not involve the material response; (iii.) all
conditions (28) are trivially satisfied for both positive T1 and T2, so that any instability is
ruled out when the stresses are both tensile.
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The four eigenvalues of the tensor E are:

kxlx
ly

,
kyly
lx

,
4ko
lxly

+
T1 + T2

2
±

√
16k2o
l2xl

2
y

+

(
T1 − T2

2

)2

, (29)

and thus, the (PD) condition, Eq. (28), can be rewritten in the equivalent form

lx > 0, ly > 0,
4ko
lxly

+
T1 + T2

2
−

√
16k2o
l2xl

2
y

+

(
T1 − T2

2

)2

> 0 ⇐⇒ (PD) (30)

• The tensor H is positive definite on the restriction to symmetric tensors if and only if all
springs have strictly positive stiffness.

• Recalling the equation F ′
ik = vi,jFjk, the positive definiteness of the tensor G, equations (19),

can easily be shown to be equivalent to (PD), equation (28).

At a fixed value of P2 > 0, ly = l0y + P2/ly is also fixed, so that lyP2 > 0; moreover, T1 + T2

is assumed to be strictly positive, which implies P1lx + P2ly > 0. Under these assumptions, the
vanishing of an eigenvalue of E occurs at

P1

kxl0x
= −1

2

(
1±

√
1− 16kolyP2

kx(l0x)
2(4ko + lyP2)

)
, (31)

where the ‘±’ shows the possibility of restabilization in terms of (PD) of the constitutive tensor.
In fact, eq. (31) always provides two negative values. The largest denotes the first failure of (PD)
in a continuous decrease of P1, while the latter denotes the recovery of it.

2.1.5 Acoustic tensor and the (SE) and (E) conditions

The acoustic tensor associated to the elasticity tensor Eijkl is defined as

Aik = Eijklnjnl, (32)

where the unit vector ni is defined in the plane as

[ni] = [cos γ, sin γ], (33)

so that

A(n) =

E1111 cos2 γ + E1212 sin2 γ E1221 sin γ cos γ

E2112 sin γ cos γ E2121 cos2 γ + E2222 sin2 γ

 , (34)

or, more explicitly,

A(γ) =


kxlx
ly

cos2 γ +

(
4ko
lxly

+
P2

lx

)
sin2 γ

4ko
lxly

sin γ cos γ

4ko
lxly

sin γ cos γ

(
4ko
lxly

+
P1

ly

)
cos2 γ +

kyly
lx

sin2 γ

 . (35)

The strong ellipticity (SE) condition implies that acceleration and planar waves can propagate in
every direction [12]. It requires that the acoustic tensor be positive definite for every unit vector
n, so that for every non-null vector g

g ·A(n)g > 0 ⇐⇒ (SE), (36)

9



which is equivalent to the positivity of both the element A11 of the acoustic tensor and its deter-
minant

detA(γ) =

(
4ko
lxly

+ T1

)
︸ ︷︷ ︸

E2121

kxlx
ly

cos4 γ +

 4ko
lxly

(T1 + T2) + T1T2︸ ︷︷ ︸
see (PD)

+kxky

 cos2 γ sin2 γ

+

(
4ko
lxly

+ T2

)
︸ ︷︷ ︸

E1212

kyly
lx

sin4 γ. (37)

However, assuming lx > 0 and ly > 0, and due to the requirement that (SE) holds for every n, i.e.
γ, strong ellipticity reduces the positivity of the determinant of the acoustic tensor, namely,

detA(γ) > 0, ∀γ ∈ [0, 2π] ⇐⇒ (SE). (38)

The ellipticity condition (E) requires that the acoustic tensor be nonsingular,

detA(γ) ̸= 0, ∀γ ∈ [0, 2π] ⇐⇒ (E), (39)

so that

(PD) =⇒ (SE) =⇒ (E)

and the failure of (SE) in a continuous deformation path corresponds to the first failure of (E).
When ellipticity fails, a localization of incremental deformation, in other words, a discontinuity

in the gradient of incremental displacement ∇v can occur across a planar band in the form [12]

[[∇v]] = gcr ⊗ ncr, (40)

where ncr is a critical value of n for which the vector gcr becomes an eigenvector of the acoustic
tensor, associated with a null eigenvalue. The operator [[·]] denotes jump in the relevant argument.
Therefore, a shear band occurs when gcr ·ncr = 0, a compaction band when gcr and ncr are parallel,
otherwise the band represents a mixed mode.

Regarding the above (PD), (SE), and (E) conditions, the following details can be noticed.

• Assuming lx > 0 and ly > 0, at failure of (PD) when either T1 + T2 = 0 or (T1 + T2)H1212 =
−T1T2 it is E1212E2121 = k2o/(lxly)

2, so that failure of (SE) cannot occur. Therefore, the two
criteria fail simultaneously only when either lx = 0 or ly = 0.

• When the term multiplying cos2 γ sin2 γ is positive in eq. (37), failure of (SE) occurs for
γ = {0, π} or γ = {π/2, 3π/2}, and the vanishing of the determinant of the acoustic tensor
admits the two solutions E1212 = 0 or E2121 = 0. In these cases, the eigenvectors corresponding
to the null eigenvalues of the acoustic tensor are orthogonal to n, so that a shear band forms.

A full analytical analysis of the vanishing of the determinant of the acoustic tensor (37) is
awkward, so that failure of the conditions E2121 > 0 is now examined. The component E2121 =
H2121+T1 remains positive under tensile stress and also at small levels of compressive stress,
but (i.) it may vanish and (ii.) it may become positive again with increasing compression.
In particular, the vanishing of E2121 leads to the following two critical values for the force P1,
both corresponding to the vanishing of the determinant of the acoustic tensor

P1

kxl0x
= −1

2

(
1±

√
1− 16ko

kx(l0x)
2

)
, (41)

so that at the higher value of the critical forces, the equivalent material loses stability, while
at the lower value, returns to be stable. In other words, the ‘±’ sign represents the signature
of restabilization.
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A comparison between the (PD) condition in the case lyP2 > 0, eq. (31), and the failure of (E)
in the case E2121 = 0, eq. (41), leads to the following conclusions:

In a continuous increase of compressive load, (PD) vanishes before (SE). Subsequently,
with further compression, the condition (SE) may be recovered, and later also (PD).
This is the essence of (i.) material instability with the failure of the exclusion condition
for bifurcation occurring before the loss of ellipticity, and (ii.) subsequent restabiliza-
tion, with a return inside (SE), where localization is impossible, and later inside (PD),
where all bifurcations are excluded.

The above analysis is confirmed by the examples reported in Section 5, which demonstrate that
for certain paths in the P1–P2 space, restabilization does occur, while it remains impossible for
other paths.

It is noted in the conclusion of this section that, with the exception of the model proposed
in [13], all restabilizing structures introduced so far [1–4] do not allow for the so-called ‘self-
restabilization’, in which the structure spontaneously restabilizes with increasing load. Rather,
after the first bifurcation, the structure must be forced to remain on the trivial path to observe
restabilization. This feature is retained in the equivalent continuum, because localized deformations
prevail and persist after the first violation of ellipticity. In this way, the homogeneity of the state
would be destroyed. Therefore, to observe restabilization in a continuum, one must postulate
that the development of localized deformation bands is momentarily ‘frozen’ after the first loss of
ellipticity and until its recovery.

3 A complete analysis of the unit cell as a discrete structure
The unit cell has been analyzed in Section 2 as an elementary part of an infinite grid subject to a
linear displacement field, so that only 4 degrees of freedom enter the calculation.

The purpose of this section is to provide a complete analysis of the unit cell for a general
non-homogeneous deformation, revealing that:

• The positive definiteness of its total potential energy leads to the same condition that defines
(PD) in the equivalent solid.

• The exclusion of a macroscopic bifurcation for a Floquet-Bloch displacement representation
at small wavenumber yields a condition coincident with the loss of (SE) in the equivalent
continuum.

• The stability analysis in the equivalent continuum in terms of (PD) and (SE) coincides
with a bifurcation analysis in the grid, with the only possible exception occurring when a
micro bifurcation in the grid develops before a macro bifurcation. The latter case was never
observed in any of the examples referred to the structures considered in the present article.

The fact that micro bifurcations may occur while the response of the equivalent material re-
mains unaffected is demonstrated in [9–11]. The (PD) condition was considered in the context of
homogenization until now only in [7].

The unit cell is a structure characterized by 10 degrees of freedom, the displacements of the
five nodes (the central junction, labelled #5, plus the four boundary nodes, labelled from #1 to
#4)

q = {u1, v1, u2, v2, u3, v3, u4, v4, u5, v5}T , (42)

where u and v denote horizontal and vertical components, respectively, as shown in Fig. 5.
Noting that only one-half of the axial springs with stiffnesses kx and ky pertains to the unit cell

(from which the factor 1/4 enters the equation below), the total potential energy in a deformed
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Fig. 5. The deformation of the unit cell when subject to generic dead forces Hi, Vi and Mi, i = 1, ..., 4 applied on
the bar ends. Components ui and vi denote the horizontal and vertical displacements of the nodes i = 1, ..., 5. The
node #5 is central, and its displacement is not shown in the figure; the longitudinal springs elongate of an amount
di, i = 1, ..., 4, so that only one half is pertinent to the half bar. Note that the bars are flexurally rigid, so that their
rotations αi are related to the end displacements.

configuration is given by

W (q) =
ko
2
(α1 − α2)

2 +
ko
2
(α2 − α3)

2 +
ko
2
(α3 − α4)

2 +
ko
2
(α4 − α1)

2 +
1

4
kxd

2
1 +

1

4
kyd

2
2

+
1

4
kxd

2
3 +

1

4
kyd

2
4 −H1

l0x
2

[(
1 +

d1
l0x

)
cosα1 − 1

]
− V1

l0x
2

(
1 +

d1
l0x

)
sinα1 −M1α1

− V2

l0y
2

[(
1 +

d2
l0y

)
cosα2 − 1

]
+H2

l0y
2

(
1 +

d2
l0y

)
sinα2 −M2α2 +H3

l0x
2

[(
1 +

d3
l0x

)
cosα3 − 1

]
+V3

l0x
2

(
1 +

d3
l0x

)
sinα3−M3α3+V4

l0y
2

[(
1 +

d4
l0y

)
cosα4 − 1

]
−H4

l0y
2

(
1 +

d4
l0y

)
sinα4−M4α4,

(43)

where the variation in the length of the four bars is

d1 = 2

√(
l0x
2
+ u1 − u5

)2

+ (v1 − v5)2 − l0x, d2 = 2

√(
l0y
2
+ v2 − v5

)2

+ (u2 − u5)2 − l0y,

d3 = 2

√(
l0x
2
+ u5 − u3

)2

+ (v3 − v5)2 − l0x, d4 = 2

√(
l0y
2
+ v5 − v4

)2

+ (u4 − u5)2 − l0y,

(44)

while the inclination angles of the bars can be written as

α1 = arctan
v1 − v5

l0x/2 + u1 − u5
, α2 = arctan

u5 − u2

l0y/2 + v2 − v5
,

α3 = arctan
v5 − v3

l0x/2 + u5 − u3
, α4 = arctan

u4 − u5

l0y/2 + v5 − v4
.

(45)

Eqs. (44) and (45) show that the 10 nodal displacement components determine the configuration
of the bars, as their inclination does not play a role due to the bars’ rigidity under bending.
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3.1 A local exclusion condition for bifurcation: Positive definiteness of
the reduced stiffness matrix of the unit cell

In a similar vein to the definition of the (PD) condition in a continuum, the aim of this section is to
find an exclusion condition for bifurcation, which may occur in any grid of axially deformable but
flexurally rigid elements (the proof-of-concept model, Fig. 3) forming any domain, and subject to
arbitrary boundary conditions. The only assumed restriction is that the prestress in the unit cell is
only axial, so that shear forces and bending moments are not permitted before incremental defor-
mation. In contrast, the boundary conditions and the applied internal forces must be compatible
with this condition.

For any initial configuration which is biaxially deformed, so that the bars remain aligned parallel
to their initial directions, α1 = α2 = α3 = α4 = 0 and Q1 = Q2 = 0, but are elongated or
shortened due to the application of axial pre-loads, P1 ̸= P2 ̸= 0, the following displacement vector
characterizes the preloaded configuration:

q0 = {u0
1, 0, 0, v

0
2 ,−u0

1, 0, 0,−v02 , 0, 0}T . (46)

The stability of the above-preloaded configuration can be assessed by analysing the incremental
stiffness matrix of the unit cell. For this purpose, the total potential energy, eq. (43), of the unit
cell is expanded asymptotically around the preloaded configuration q0 as follows:

W (q0 + δq) = W (q0) +
∂W

∂q

∣∣∣∣
q0

· δq +
1

2
δq · ∂2W

∂q∂q

∣∣∣∣
q0

δq + h.o.t (47)

In the asymptotic expansion, the constant term W (q0) is irrelevant, because the total potential
energy is defined up to a constant term. Instead, the linear term must be set equal to zero for any
increment δq, to enforce the equilibrium of the preloaded configuration

∂W

∂q

∣∣∣∣
q0

· δq = 0 ∀δq, (48)

which provides the pre-load within the longitudinal springs and, again, the condition of vanishing
Q1 and Q2, two components of a kind of generalized shear

P1 = H1 = −H2 = 2kxu
0
1, P2 = V2 = −V4 = 2kyv

0
2 ,

Q1 = V1 +
M1

l0x
2 + u0

1

= −V3 +
M3

l0x
2 + u0

1

= 0,

Q2 = H2 +
M2

l0y
2 + v02

= −H4 +
M4

l0y
2 + v02

= 0.

(49)

Therefore, up to the quadratic term, the total potential energy of the preloaded configuration
reduces to

W (q0 + δq) =
1

2
δq ·K0δq, (50)

where

K0(P1, P2) =
∂2W

∂q∂q

∣∣∣∣
q0

, (51)

is the incremental stiffness matrix of the unit cell, which depends on the pre-load P = {P1, P2}
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and can be written as

K0(P1, P2) =

2kx 0 0 0 0 0 0 0 −2kx 0
0 K22 K23 0 0 0 −K23 0 0 −K22

0 K23 K33 0 0 −K23 0 0 −K33 0
0 0 0 2ky 0 0 0 0 0 −2ky
0 0 0 0 2kx 0 0 0 −2kx 0
0 0 −K23 0 0 K22 K23 0 0 −K22

0 −K23 0 0 0 K23 K33 0 −K33 0
0 0 0 0 0 0 0 2ky 0 −2ky

−2kx 0 −K33 0 −2kx 0 −K33 0 2K33 + 4kx 0
0 −K22 0 −2ky 0 −K22 0 −2ky 0 2K22 + 4ky


, (52)

where

K22 =
2kx(4kokx + P1(kxl

0
x + P1))

(kxl0x + P1)2
=

8ko + 2lxP1

l2x
,

K33 =
2ky(4koky + P2(kyl

0
y + P2))

(kyl0y + P2)2
=

8ko + 2lyP2

l2y
,

K23 =
4kokxky

(kxl0x + P1)(kyl0y + P2)
=

4k0
lxly

.

(53)

It is worth noting that the incremental stiffness matrix K0 is always singular, as two linearly
independent rigid-body translations are possible for the two-dimensional unit cell. Thus, the
dimension of the nullspace of K0 equals two. A sufficient condition for the stability of the lattice
can be obtained following these two operations: (i) remove the two rigid-body translations by
fixing the central node, u5 = v5 = 0, and consequently reduce the incremental stiffness matrix by
eliminating its two last rows and columns; (ii) impose the positive definiteness of the reduced 8×8
stiffness matrix.

The eight eigenvalues of the reduced matrix are:

2kx (double), 2ky (double), K22, K33,
1

2

(
K22 +K33 ±

√
(K22 −K33)2 + 16K2

23

)
, (54)

and thus, a sufficient condition for the uniqueness of the incremental response of the lattice is

K22 +K33 −
√
(K22 −K33)2 + 16K2

23 > 0, (55)

which coincides with the counterpart in the equivalent solid, namely, the (PD) condition, eq. (28)
or eq. (30).

Condition (55) excludes any bifurcation for all combinations of cells satisfying it. This holds
even if the grid occupies a finite domain and for every combination of mixed boundary conditions
applied at its edges.

It should finally be noted that the coincidence between the (PD) condition in the equivalent
solid and the positive definiteness of the 8 × 8 reduction of the stiffness matrix K0 holds for the
proof-of-principle structure shown in Fig. 3. More in general, when the flexurally rigid bars are
replaced by flexible rods, the coincidence does not hold, as will be shown with a counterexample
in Section 6, Fig. 12.

3.2 An exclusion condition for bifurcation of an infinite, periodic distri-
bution of cells: Positive definiteness of the matrix governing Bloch
waves

When a periodic ensemble of identical cells is considered, distributed in a finite (or infinite) region
of the plane, and the cells are all uniformly prestressed and subjected to prescribed displacements
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on the entire boundary of the region (possibly at infinity), an equivalent of the van Hove theorem
for a solid [12], but now for a discrete grid, can be proven (the proof will be given elsewhere).
This theorem leads to the conclusion that the positive definiteness of the matrix governing Bloch
wave propagation is sufficient to enforce the uniqueness of the incremental response. Therefore,
as the failure of (SE) in an infinite and uniformly deformed elastic body is the condition relevant
to bifurcation and strain localization, the analogous condition for the grid is played by the pos-
itive definiteness of the stiffness matrix K∗

0 , which will be derived below. However, while in the
continuous medium, the loss of (SE) is synonymous with strain localization, the loss of positive
definiteness of K∗

0 may occur in both micro and macro modes, and only the latter corresponds
to loss of (SE) in the equivalent material [14–16]. In fact, it is proven in this section that the
condition for the loss of positive definiteness of K∗

0 coincides, at the vanishing wavenumber limit
(i.e., infinite wavelength limit), with the (SE) condition for the equivalent material, eq. (37).

The incremental equilibrium equations for the unit cell in the preloaded configuration, subjected
to incremental forces on its boundary nodes, are considered

K0(P1, P2)q̇ = ḟ , (56)

where q̇ and ḟ denote the incremental displacements and incremental forces, respectively,

q̇ = {u̇1, v̇1, u̇2, v̇2, u̇3, v̇3, u̇4, v̇4, u̇5, v̇5}T , ḟ = {Ḣ1, V̇1, Ḣ2, V̇2, Ḣ3, V̇3, Ḣ4, V̇4, Ḣ5, V̇5}T . (57)

In the absence of body forces, the nodes inside the unit cell are not loaded from external forces,
Ḣ5 = V̇5 = 0. Moreover, the forces acting on the boundary nodes are internal to the lattice, i.e.
they are exerted on the unit cell by the neighbouring cells.

A quasi-periodic non-trivial solution of eqs. (56) is assumed according to Bloch-wave theory.
This solution is governed by the following Floquet-Bloch conditions on the boundary nodes of the
unit cell

u̇1 = u̇3e
ik1lx , v̇1 = v̇3e

ik1lx , α̇1 = α̇3e
ik1lx ,

u̇2 = u̇4e
ik2ly , v̇2 = v̇4e

ik2ly , α̇2 = α̇4e
ik2ly ,

(58)

where k = {k1, k2} is the Bloch vector and lx = l0x+P1/kx, ly = l0y +P2/ky are the current lengths
of the bars. The four incremental rotations α̇j , j = 1, · · · , 4, are related to the node incremental
displacements through eqs. (45), which in a linearised setting (valid for small-amplitude modes),
become

α̇1 =
2

lx
(v̇1 − v̇5), α̇2 = − 2

ly
(u̇2 − u̇5), α̇3 = − 2

lx
(v̇3 − v̇5), α̇4 =

2

ly
(u̇4 − u̇5). (59)

Consequently, the Floquet-Bloch conditions can be rewritten in terms of incremental displacements
only (involving now also the central node),

u̇1 = u̇3e
ik1lx , v̇1 = v̇5

1 + eik1lx

2
, v̇3 = v̇5

1 + e−ik1lx

2
,

u̇2 = u̇5
1 + eik2ly

2
, v̇2 = v̇4e

ik2ly , u̇4 = u̇5
1 + eik2ly

2
,

(60)

so that the independent degrees of freedom reduce to four: u̇5, v̇5, u̇3 and v̇4. These conditions
can be conveniently expressed in the matrix form

q̇ =



u̇1

v̇1
u̇2

v̇2
u̇3

v̇3
u̇4

v̇4
u̇5

v̇5



=



0 0 z1 0
0 (1 + z1)/2 0 0

(1 + z2)/2 0 0 0
0 0 0 z2
0 0 1 0
0 (1 + z̄1)/2 0 0

(1 + z̄2)/2 0 0 0
0 0 0 1
1 0 0 0
0 1 0 0




u̇5

v̇5
u̇3

v̇4

 , (61)
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concisely rewritten as
q̇ = Z(k1, k2)q̇

∗, (62)

where Z(k1, k2) and q̇∗ are defined accordingly to eq. (61) and z1 = eik1lx , z2 = eik2ly . A substi-
tution of eq. (61) into eq. (56) gives

K0(P1, P2)Z(k1, k2)q̇
∗ = ḟ . (63)

A left multiplication of eq. (63) by Z(k1, k2)
H, where the superscript H denotes the complex

conjugate transpose operation, leads to the reduced system

Z(k1, k2)
HK0(P1, P2)Z(k1, k2)q̇

∗ = ḟ∗, (64)

where

ḟ∗ = Z(k1, k2)
Hḟ =



Ḣ2 + z2Ḣ4

2
+

Ḣ4 + z̄2Ḣ2

2
V̇1 + z1V̇3

2
+

V̇3 + z̄1V̇1

2
Ḣ3 + z̄1Ḣ1

V̇4 + z̄2V̇2


. (65)

Note that if the boundary displacements satisfy the quasi-periodicity conditions (58), then the
boundary forces will also satisfy the same conditions but with the opposite sign since the boundary
nodes must be in equilibrium,

Ḣ1 = −Ḣ3e
ik1lx , V̇1 = −V̇3e

ik1lx ,

Ḣ2 = −Ḣ4e
ik2ly , V̇2 = −V̇4e

ik2ly ,
(66)

so that
Ḣ2 + z2Ḣ4 = Ḣ4 + z̄2Ḣ2 = 0,

V̇1 + z1V̇3 = V̇3 + z̄1V̇1 = 0,

Ḣ3 + z̄1Ḣ1 = 0,

V̇4 + z̄2V̇2 = 0,

(67)

which implies ḟ∗ = 0.
Therefore, the following homogeneous system is obtained

K∗
0 (k1, k2, P1, P2)q̇

∗ = 0, (68)

where the matrix
K∗

0 (k1, k2, P1, P2) = Z(k1, k2)
HK0(P1, P2)Z(k1, k2) (69)

is

K∗
0 =


K∗

11 K∗
12 −2(1 + eik1lx)kx 0

K∗
21 K∗

22 0 −2(1 + eik2ly )ky
−2(1 + e−ik1lx)kx 0 4kx 0

0 −2(1 + e−ik2ly )ky 0 4ky

 , (70)

in which the elements

K∗
11 =

1

l2y
[8ko + 2ly(2kxly + P2)− 2(4ko + lyP2) cos k2ly],

K∗
22 =

1

l2x
[8ko + 2lx(2kylx + P1)− 2(4ko + lxP1) cos k1lx],

K∗
12 = K∗

21 =
4ko
lxly

sin k1lx sin k2ly

(71)

‘condense’ the dependence on P1 and P2.
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A non-trivial solution of eq. (68) and, hence, a bifurcation of the lattice, becomes possible when
a Bloch vector k = {k1, k2} and a preload P = {P1, P2} exist such that

detK∗
0 (k1, k2, P1, P2) = 16kxky

[
(K∗

11 − 2kx)(K
∗
22 − 2ky)− (K∗

12)
2

− 2kx(K
∗
22 − 2ky) cos k1lx − 2ky(K

∗
11 − 2kx) cos k2ly + 4kxky cos k1lx cos k2ly

]
= 0. (72)

Note that the matrix K∗
0 (k,P ) is Hermitian. Thus, the determinant (72) is always real. Moreover,

the periodicity of Z(k) implies that this determinant is periodic in the k-space with period [0, 2π]×
[0, 2π] in the basis {b1, b2}, reciprocal to the lattice direct basis {a1,a2}, so that bi · aj = δij . It
is clear from eq. (72) that the bifurcation modes can exhibit different wavelengths 2π/k, where
k = |k|=

√
k21 + k22. When the wavelength becomes infinite, a global or macro bifurcation occurs;

otherwise, the bifurcation is called microscopic.
Therefore, a macroscopic bifurcation of the lattice can be identified by assuming the wave vector

in the form k = kn, where n = {n1, n2} is a unit vector defining the wave direction, and then
considering the leading-order term of eq. (72) in an expansion as k → 0. This gives

16kxkyl
2
xl

2
y

{(
4ko
lxly

+
P1

ly

)
kxlx
ly

n4
1 +

[
4ko
lxly

(
P1

ly
+

P2

lx

)
+

P1P2

lxly
+ kxky

]
n2
1n

2
2

+

(
4ko
lxly

+
P2

lx

)
kyly
lx

n4
2

}
= 0, (73)

which coincides with the failure of ellipticity for the equivalent elastic solid, namely, the vanishing of
the determinant of the acoustic tensor, eq. (37), except for the presence of the strictly positive factor
16kxkyl

2
xl

2
y. This shows that, for the proof-of-principle structure shown in Fig. 3, the macroscopic

bifurcation of the lattice is equivalent to the loss of ellipticity of the effective continuum. Conversely,
microscopic bifurcations of the lattice remain undetected in the effective continuum. In any case,
in all our examples related to the proof-of-principle structure, macro bifurcations have been found
to be the first manifestation of instability in the grid.

It is finally remarked that stability in terms of Floquet-Bloch wave propagation in the lattice
requires that all the eigenvalues of the matrix K∗

0 , eq. (70), be strictly positive.
The positive definiteness of K∗

0 plays an important role, because it is used to demonstrate that
the restabilization occurring in the equivalent elastic solid is a ‘true’ restabilization, holding also
for the underlying lattice. This is a crucial point distinguishing the ‘true’ restabilization found in
the present article from the mere restabilization of the effective medium, taking place while the
underlying elastic grid remains unstable, as found in [8] and also below, see Fig. 12 in Section 6.

4 A homogenization based on the calculus of variations and
notions of Gamma-convergence

The homogenization scheme presented in Section 2 is based on purely mechanical considerations.
We have privileged this formulation because shear bands and restabilization are obtained as genuine
mechanical phenomena and are not hindered by mathematical technicalities. However, the reader
might question whether the same results on homogenization could be obtained through a more
formal analysis based on the calculus of variations and notions of Gamma-convergence (see, for
instance, [17], where grids of elastic rods are addressed, but in the absence of prestress). The
answer to this question is positive, so that the purpose of the present Section is to show that:

Formal homogenization based on variational calculus leads exactly to the elasticity
tensor (20).

The presentation is limited to the homogenization algorithm based on variational calculus and
Γ-convergence, while its mathematical foundations are not reviewed for conciseness; for this aspect,
the interested reader is addressed to [17].
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• The homogenization procedure concerns the limit where the lattice cell size is much smaller
than the domain size, also known as the continuum limit. The limiting energy density of the
composite is independent of the domain it occupies. Therefore, the elastic energy density of
the effective continuum can be conveniently determined by considering a lattice of infinite
extent. This lattice is generated by tessellating the unit cell shown in Fig. 3 along the two
orthogonal directions {e1, e2}, which define the direct basis of the lattice. Each unit cell
is uniquely identified by a pair of indices (m,n), and denoted as Cm,n. Consequently, the
infinite lattice domain B can be expressed as the union of all unit cells indexed by the set
Z2, such that

B =
⋃

(m,n)∈Z2

Cm,n. (74)

As a consequence, the elastic energy of the infinite grid is

W (q) =
∑

(m,n)∈Z2

1

2
qm,n ·K0qm,n (75)

where K0 is the incremental stiffness matrix of the unit cell, eq. (52), and qm,n is the
incremental displacement vector of the unit cell Cm,n, eq. (57)1.

• The discrete time Fourier transform (DTFT) is defined for the lattice as

q̂(k) = V
∑

(m,n)∈Z2

qm,ne
−i(k1lxm+k2lyn), (76)

where V = lxly is the current volume of the unit cell Cm,n. The inverse transform is

qm,n =
1

4π2

∫
C∗

q(k)ei(k1lxm+k2lyn)dk, (77)

where C∗ =
[
− π

lx
, π
lx

]
×
[
− π

ly
, π
ly

]
is the reciprocal unit cell. An application of the DTFT to

the 10× 1 displacement vector qm,n leads to

q̂(k1, k2) = Z(k1, k2)q̂
∗(k1, k2), (78)

where Z(k1, k2) is the 10 × 4 matrix given in eq. (61) and q̂∗(k) is the 4 × 1 reduced dis-
placement vector

q̂∗(k) = {û5(k), v̂5(k), û3(k), v̂4(k)}. (79)

• The Parseval’s theorem allows to represent the elastic energy as

W =
1

4π2V

∫
C∗

1

2
q̂(k) ·K0q̂(k) dk, (80)

where a bar over a symbol denotes the complex conjugate, so that, a substitution of eq. (78)
yields

W =
1

4π2V

∫
C∗

1

2
q̂(k) ·

[
Z(k)HK0Z(k)

]
q̂(k) dk, (81)

where the superscript H denotes the conjugate transpose operator, while

K∗
0 (k) = Z(k)HK0Z(k), (82)

is the matrix given in eq. (70), referred to as the ‘dynamical matrix’ in [17].

• Scaling is introduced by considering a sequence of lattices spanning increasingly larger self-
similar domains Ω/ε, where ε > 0 is a small scaling factor. The sequence of scaling energies
takes the form

Wε =
1

4π2V

∫
C∗
ε

1

2
q̂(k) ·K∗

0,ε(k)q̂(k) dk, C∗
ε =

[
− π

εlx
,
π

εlx

]
×
[
− π

εly
,
π

εly

]
, (83)

where the stiffness matrix scales as

K∗
0,ε(k) = ε−2K∗

0 (εk). (84)
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• Assume that the lattice is acted upon by macroscopic distributed forces defined by the func-
tion

b0(x) = (b0x(x), b0y(x)), (85)

then, the equilibrium equations in the transformed space become

K∗
0,ε(k) q̂

∗
ε (k) = b̂(k), k ∈ C∗

ε , (86)

where
b̂(k) = L b̂0(k), (87)

in which b̂0(k) is the ordinary Fourier transform of b0(x) and the operator L localizes the
continuum forces to each of the lattice joints, so that it has the form

L =


1/2 0
0 1/2

1/2 0
0 1/2

 . (88)

Note that our choice of macroscopic distributed forces, eq. (85), does not include any cou-
ple, as this would not be admissible for a Cauchy elastic effective material. Therefore, our
equivalent solid turns out to be a Cauchy material, where micropolar effects are excluded.

• The ‘effective dynamical matrix’ in [17] is obtained as the continuum limit

KEFF
0 (k) =

(
lim
ε→0

LT

(
1

V
K∗

0,ε(k)

)−1

L

)−1

, (89)

which evaluates explicitly as

KEFF
0 (k) =


kxlx
ly

k21 +

(
4ko
lxly

+
P2

lx

)
k22

4ko
lxly

k1k2

4ko
lxly

k1k2

(
4ko
lxly

+
P1

ly

)
k21 +

kyly
lx

k22

 , (90)

revealing that it represents the acoustic tensor of the equivalent material, eq. (35), where now
cos γ = k1 and sin γ = k2.

The continuum energy of the effective material is

WEFF =
1

4π2

∫
R2

1

2

[
û(k) v̂(k)

]
·KEFF

0 (k)

û(k)
v̂(k)

 dk, (91)

which admits the representation

WEFF =
1

4π2

∫
R2

1

2

[
ik1û(k) ik2v̂(k)

]
· CEFF

0

−ik1û(k)

−ik2v̂(k)

 dk, (92)

providing the effective constitutive tensor CEFF
0 , which is found to coincide with the effective

constitutive tensor E given in eq. (20).

The conclusion is that the homogenization procedure introduced in Section 2 is rigorous and
that the technique based on variational calculus and Gamma-convergence is analogous to the
dynamic asymptotic homogenization scheme developed in [7]. In fact, both these approaches
lead to the acoustic tensor of the equivalent material.
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5 The proof-of-principle model: (PD) and (SE), shear bands,
compaction bands, mixed modes, and restabilization

The conditions of positive definiteness of tensor E , briefly (PD), eq. (28) and the equivalent eq. (30),
is a local sufficient condition for uniqueness of the incremental response of the effective elastic
material for a finite body subject to any mixed (imposed displacements and tractions) boundary
conditions. For a homogeneously deformed and stressed infinite body, the van Hove theorem [12,
18] states that failure of (PD) does not imply any instability or bifurcation, but the relevant
condition becomes the loss of (SE), occurring the first time when the determinant of the acoustic
tensor eq. (37) vanishes from positive and thus representing also a failure of ellipticity (E). The
latter case corresponds to the formation of localized deformation bands, which may be shear,
compaction, or mixed bands. In the first two cases, the localized strain is either shear or normal
to the band, respectively, while in the mixed case, the localized strain includes both shear and
normal components. Results presented in Section 3.1 show that the (PD) condition remains the
same for the proof-of-principle model, while loss of (SE) in the solid corresponds to the emergence
of a macrobifurcation in the lattice. Note that the possibility of microbifurcations is excluded only
when (PD) holds.

In the following examples, regions of (PD) and (SE) pertaining to the equivalent continuum
and to the infinite lattice have been found to coincide, so that in the lattice, the first bifurcation
was always found to be macroscopic.

On the introduction of the following dimensionless parameters

p1 =
P1

kxl0x
, p2 =

P2

kxl0x
, ξ =

l0y
l0x
, κx =

kx(l
0
x)

2

ko
, κy =

ky(l
0
x)

2

ko
, (93)

both conditions (PD) and (SE) can be represented in the plane of biaxial stress p1–p2 as functions
of the parameters ξ, κx, and κy, defining the grid of axially deformable, but flexurally rigid bars.

With the above dimensionless parameters, the requirement that the bars remain of finite length,
in other words, that λ1 and λ2 remain strictly positive, becomes

p1 > −1, p2 > −κyξ

κx
, (94)

which limits the parameter space of the investigation.
A square grid, ξ = 1 and κx = κy, and a rectangular grid, ξ = 1 and κx = κy/3, of flexurally

rigid elements are analyzed in Figs. 6 and 7, where the dark blue (light blue) domain represents
PD (represents SE). Here, (SE) denotes strong ellipticity, occurring when the acoustic tensor is
positive definiteness, so that failure of (SE) coincides with the first failure of (E). Increasing values
of axial stiffnesses κx and κy are investigated. On the boundary of (SE), where the loss of ellipticity
occurs, the insets report arrows representing the unit normal to the localization band, ncr, and
the associated mode gcr, so that the localization mode can be obtained from equation (40).

Fig. 6, referring to ξ = 1 and κx = κy = {0.01, 14, 16, 18, 40, 100}, shows the following features.

• As expected, the (PD) region lies inside the (SE) domain.

• The material is cubic, so that the response is symmetric with respect to the diagonal of the
map.

• For sufficiently small axial stiffnesses, κx = κy = 0.01 and 14 in the figure, restabilization
may only occur with regard to (PD) (path labelled ‘X’), but not in terms of (SE). The
only difference between the two axial stiffnesses 0.01 and 14 is in the form and size of the
(PD) domain, while (SE) does not change (which is also true for κx = κy = 16). The first
bifurcation in the grid coincides with the loss of (SE), possible at a straight segment of its
boundary segment aligned orthogonally to the symmetry axis. Only on the intersection point
with the symmetry axis (see the paths labelled ‘4’ and ‘6’), two symmetric shear bands are
possible. Otherwise, the localization bands always contain a strain component orthogonal to
the band and occur in a mixed mode.
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Fig. 6. Strong ellipticity (SE), positive definiteness (PD), and lattice ‘first (macroscopic) bifurcation’ domains for
the cubic grid with ξ = 1, and six values of axial stiffness κx = κy = {0.01, 7, 8, 9, 20, 100}. The arrows sketched in
the insets represent the critical direction ncr and the associated mode gcr responsible for the loss of strong ellipticity.
Failure of (PD) and subsequently of (SE) and their recovery are visible, for instance see path labelled ‘Y’.
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• Restabilization in terms of (SE) corresponds to the formation of vertical and horizontal
‘channels’ in the maps, clearly visible for κx = κy = 18, 40, and 100.

• All boundaries of (SE) are piecewise linear; on vertical and horizontal segments, loss of (SE)
occurs with shear band formation, while on the segment(s) inclined at 45◦ the localization
bands are mixed mode, ranging from the extreme cases of shear (at intersections with the
diagonal) and compaction bands (occurring in the limits p1 = −1 and p2 = −1.

• The mode of localization bands is independent of the stiffness κx = κy of the grid, but only
depends on the inclination of the (SE) boundary. Thus, the localization mode is the same
along equally-inclined boundaries of (SE) for different values of κx = κy.

• The path labelled ‘1’ originates from the unloaded (stable) case, hits the boundary of (SE),
then travels inside an unstable (white) region and hits the boundary of (SE) again at the
instant of restabilization. At both boundaries, two shear bands occur, with ncr · gcr = 0.

• The path labelled ‘3’ shows a loss of (SE) and a recovery, corresponding in both cases to a
shear band, and a final failure of (SE) with the formation of mixed mode bands. Restabi-
lization does not occur for the path labelled ‘2’.

• The path labelled ‘Y’ starts from a (PD) state {p1 = 0, p2 > 0}, so that a loss of (PD) is ob-
served before the loss of (SE) occurring with shear band formation, while (SE) is subsequently
recovered and later (PD).

• The special case κx = κy = 16 corresponds to the nucleation of the instability channels,
which are only visible as two straight lines. In this very particular case, (SE) is lost and
immediately recovered (path labelled ‘5’), a strange situation, for which it is difficult to
provide a mechanical interpretation.

• A general conclusion is that an increase in axial stiffness is a destabilizing factor, promoting
the loss of (PD) and (SE), and delaying their recovery. In other words, stiffening may promote
material instability, a statement that may seem paradoxical, but is consistent with analogous
results found in the structures analysed in [1–4].

Data referred to the paths reported in red in Fig. 6 (inclined at the angle ϕ with respect to the
positive p1 axis) are provided in Table 1. The table supplies the values of biaxial loads pE for loss
of (SE) and the corresponding inclination angles for the localization band, θn, and mode θg .

Fig. 7, referring to ξ = 1 and κx = κy/3 = {0.1, 5, 5.5, 6, 18, 50}, shows a situation similar to
that reported in Fig. 6, except that now the material is orthotropic and the diagonal symmetry
is lost. Orthotropy is not geometrical, because ξ = 1, but is related to the difference between the
stiffnesses of vertical and longitudinal springs. The following features are remarkable and cannot
be observed in the previously analyzed case of cubic symmetry.

• The boundaries of (SE) are all curved, but may present straight portions.

• At increasing axial stiffness, the boundaries of (PD) and (SE) tend to coincide. The latter
tend to become composed of straight segments.

• Along straight boundaries of (SE), loss of (SE) occurs in the form of shear bands, while mixed
modes prevail on curved boundaries.

• Note the twin shear bands indicated in the figure corresponding to κx = κy/3 = 5, which
have opposite inclinations, different from the vertical and horizontal directions defining the
rods forming the grid.

In the closure of this section, bifurcation surfaces are reported in Fig. 8, referred to the space
{k̃1, k̃2, p}, where k̃1 = k1lx and k̃2 = k2ly are normalised wavenumbers. The surfaces are obtained
for the grid of bars satisfying cubic symmetry. The bifurcation analysis was performed via the
Floquet-Bloch representation of the lattice displacement through equation (72) and refer to the
radial loading paths p{cosϕ, sinϕ} shown as red dashed lines in Fig. 6.
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Fig. 7. As for Fig. 6, except that now, the grid is orthotropic, because κx = κy/3, although ξ = 1. Differently from
the cubic case, the boundaries of (SE) are curved, and the localization bands are characterized by a mixed mode,
ranging from shear bands to compaction bands. Restabilization remains evident.
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κ Path ϕ (SE) loss (SE) recovery (SE) re-loss

18 1 0◦ pE = {−0.333, 0} p = {−0.667, 0} -
θn = 0◦ θn = 0◦ -
θg = 90◦ θg = 90◦ -

2 45◦ pE = {−0.333,−0.333} - -
θn = 0◦, 90◦ - -
θg = 90◦, 0◦ - -

3 15◦ pE = {−0.333,−0.089} p = {−0.667,−0.179} p = {−0.789,−0.211}
θn = 0◦ θn = 0◦ θn = 27.4◦, 152.6◦

θg = 90◦ θg = 90◦ θg = 152.6◦, 27.4◦

14 4 45◦ pE = {−0.5,−0.5} - -
θn = 45◦, 135◦ - -
θg = 135◦, 45◦ - -

16 5 19.5◦ pE = {−0.5,−0.177} p = {−0.5,−0.177} p = {−0.738,−0.262}
θn = 0◦ θn = 0◦ θn = 30.8◦, 149.2◦

θg = 90◦ θg = 90◦ θg = 149.2◦, 30.8◦

6 45◦ pE = {−0.5,−0.5} - -
θn = ∀θ ∈ [0◦, π◦] - -
θg ⊥ θn - -

Table 1. Loss, recovery, and re-loss of strong ellipticity for different axial stiffnesses κx = κy = κ and the radial
loading paths p = {p1, p2} = p{cosϕ, sinϕ} reported red in Fig. 6. The radial loading path in the p1-p2 plane is
singled out by the angle ϕ measured counterclockwise from the p1 axis.

The surfaces correspond to the satisfaction of the bifurcation condition, eq. (72), so that for all
other points, the incremental solution is unique, although may be unstable. The radial paths start
from the unloaded state, p = 0, from which compression is increased, and the loading parameter p <
0 decreases. The red arrows in the graphs denote the direction of eigenvectors, which correspond
to the direction of the normal to the localization band. The macroscopic modes of bifurcation
occur for vanishing wavevector, k̃1 = k̃2 = 0, while microscopic modes are characterized by values
of k̃i ̸= 0.

• The path labelled ‘1’ shows a first bifurcation, occurring simultaneously in a macroscopic
mode and in infinite microscopic modes (because the surface has a horizontal line) with
k̃1 ̸= 0 and k̃2 = 0. The macroscopic mode corresponds to a shear band formation in
the equivalent material with the normal aligned parallel to the k̃1-axis. Restabilization is
finally observed along the path (because the surface is closed), following another point where
multiple bifurcations and shear bands occur.

• Also for the path labelled ‘2’, the first bifurcation simultaneously involves a macroscopic mode
together with infinite microscopic modes (because the surface has two orthogonal horizontal
lines), with either k̃1 ̸= 0 and k̃2 = 0 or k̃1 = 0 and k̃2 ̸= 0. Restabilization does not occur in
this case, in the sense that it would become possible when the length of the bars vanishes, a
situation which is not admissible.

• The path labelled ‘3’ is similar to path ‘1’, but after the initial bifurcation and restabilization,
a final bifurcation occurs, corresponding to mixed mode localization bands.

• Restabilization is excluded for paths labelled, ‘2’, ‘4’, and ‘6’, because the surface is punctured
only one time, but in the two cases the bifurcation modes are different. Infinite shear bands
become possible when loss of (SE) occurs for path labelled ‘6’, due to the high symmetry.

• The path labelled ‘5’ corresponds to the strange behaviour where strong ellipticity is lost at
a point, immediately recovered, and finally lost again.
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All features already pointed out for Fig. 6 are confirmed from the analysis of the bifurcation
surfaces.

(a) Path 1 (b) Path 2 (c) Path 3

(d) Path 4 (e) Path 5 (f) Path 6

Fig. 8. Bifurcation surfaces obtained by plotting the condition (72) in the space {k1lx, k2ly , p}, referred to the
specific radial loading paths p{cosϕ, sinϕ} shown as red dashed lines in Fig. 6. The red arrows denote the bifurcation
macro-modes, which are observed when k1 = k2 = 0. Restabilization occurs in paths labelled ‘1’, ‘3’, and ‘5’. Note
that the first bifurcation along paths 1-3 and the restabilization along path 3 correspond to the simultaneous
occurrence of both a macro mode and infinite microscopic modes, as the mode wavelength is arbitrary.
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6 Islands of instability: a grid of axially and flexurally de-
formable elastic rods

The elastic structure with lumped degrees of freedom has shown its merits, highlighting through
homogenization the phenomenon of restabilization and providing a deep insight into material in-
stability. Now, a new model based on axially and flexurally deformable elastic rods, defining the
periodic grid shown in Fig. 9, is used to confirm findings based on the lumped structure and dis-
close further features of interest. In particular, it is shown below that the ‘channels’ may become
‘islands’ of instability in a ‘sea’ of stability. Moreover, it is also proven that structures can be
designed to exhibit radial paths of loading, emanating from the unloaded state, that may graze
instability regions. In the latter circumstance, it is shown that a perturbation approach evidences
the formation of different forms of shear bands at different loadings, occurring subsequently while
the loading path remains inside the (SE) region.

The elastic rods are equipped with the same bending stiffness in the horizontal and vertical
directions of the grid

Bx = By = B, (95)

while the axial stiffnesses of the horizontal and vertical rods, Ax and Ay, are assumed equivalent
to those of linear elastic springs, to allow an easier comparison with the proof-of-concept model
with lumped degrees of freedom

Ax = kxlx, Ay = kyly. (96)

Fig. 9. Left: a rectangular lattice of axially and flexurally deformable rods realizes an architected material capable
of losing and regaining ellipticity under monotonously increasing compressive load. Right: the unit cell; axially, the
rods behave as linear springs, thus providing a highly compliant axial deformation within a linear range.

The constitutive tensor of the equivalent elastic material is obtained with the procedure de-
scribed in [7]. The components of the elasticity tensor, prestressed as a function of the loads P1

and P2 acting on the grid, are

E1111 =
kxlx
ly

, E2222 =
kyly
lx

E1221 = E2112 =
2

∆
E−

1 E−
2

√
BP1P2,

E1212 =
ly
lx∆

[
E−

1 E+
2 lxP1P

3/2
2 − 2E−

1 E−
2

√
BP 2

2 + E+
1 E−

2 lxP
1/2
1 P 2

2

]
,

E2121 =
lx
ly∆

[
E+

1 E−
2 lyP

3/2
1 P2 − 2E−

1 E−
2

√
BP 2

1 + E−
1 E+

2 lyP
2
1P

1/2
2

]
,

(97)

where

E±
1 = exp

(
lx

√
P1

B

)
± 1, E±

2 = exp

(
ly

√
P2

B

)
± 1,

∆ = E−
1 E+

2 lxlyP1P
1/2
2 − 2E−

1 E−
2

√
B(P1lx + P2ly) + E+

1 E−
2 lxlyP

1/2
1 P2.

(98)
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The elasticity tensor, eq. (97), can be rewritten in terms of the principal components of Cauchy
stress, T1 and T2, as

E1111 =
kxlx
ly

, E2222 =
kyly
lx

, E1221 = E2112 =
2

∆
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1 E−
2

√
BT1T2,
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1

∆

[
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1 E+
2 l1/2x lyT1T

3/2
2 − 2E−

1 E−
2

√
BT 2

2 + E+
1 E−

2 lxl
1/2
y T

1/2
1 T 2

2

]
,
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1
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1/2
y T
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where

E±
1 = exp
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√
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)
± 1, E±

2 = exp

(
ly

√
T2lx
B

)
± 1,
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1 E+
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1 E−
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(100)

The following dimensionless parameters are introduced

ξ =
l0y
l0x
, κx =

kx(l
0
x)

3

2B
, κy =

ky(l
0
x)

3

2B
, p1 =

P1

kxl0x
, p2 =

P2

kxl0x
, (101)

and results in terms of (PD) and (SE) domains in the p1–p2 plane are reported in Fig. 10.
The figure has to be compared with the analogue for the lumped degrees of freedom structure,

Fig. 6. The numerical values of the parameters are the same (except for κ = 18.34) in the two
figures, namely, κx = κy = {0.01, 14, 16, 18.34, 40, 100} and ξ = 1. Moreover, the radial paths
(shown in red) are also the same, but now lead to the values reported in Table 2.

The stability maps plotted in the figure agree well with the proof-of-principle structure and
confirm all previous findings. However, the two following features are important and now disclosed.

• Cases κx = κy = 16 and 18.34 show the existence of ‘islands’ of instability, where (SE) is
violated, in a sea of ‘stability’, where (SE) holds.

• The radial paths labelled ‘2’ and ‘5’ are tangent respectively to two or one island of loss
of (SE). In this situation, a perturbation applied when the material is sufficiently close to
instability reveals the appearance, disappearance, and reappearance of strain localization.
The latter appears two times, the first ‘near the island’ and the second near the ‘final frontier’,
a feature sketched in Figs. 2 and 13. The discussion on this important point is deferred to
Section 6.1 below.

Fig. 11 reports the bifurcation surfaces similarly to the discrete case, Fig. 8, so that the results
presented in the two figures can be compared. The following features emerge from the comparison.

• The first bifurcation, the restabilization, and (when it occurs) the final bifurcation always
occur in the macroscopic mode, so that the equivalent material loses, regains, and loses again
ellipticity.

• Mixed mode strain localization occurs only at restabilization; in all the other cases, shear
bands occur at the loss of (SE).

• The path labelled ‘6’ does not show the occurrence of infinite shear bands, but only two, one
vertical and one horizontal, are formed.

• In the path labelled ‘5’, the instability island is only touched, where a shear band occurs,
together with the macroscopic bifurcation of the lattice.

In the closure of this section, it is noted that, for sufficiently high values of κx = κy, islands of
restabilization of the equivalent material may appear without the lattice being stable. This is a true
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Fig. 10. Stability domains as for Fig. 6, except that now the grid comprises flexurally and axially deformable
elastic rods. Note the ‘islands of instability in the sea of stability (SE)’.
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κ Path ϕ (E) loss (E) recovery (E) re-loss

18.34 1 0◦ pE = {−0.231, 0} p = {−0.625, 0} -
θn = 0◦ θn = 0◦ -
θg = 90◦ θg = 90◦ -

2 45◦ pE = {−0.333,−0.333} p = {−0.333,−0.333} p = {−0.5,−0.5}
θn = 0◦ θn = 0◦ θn = 45◦, 135◦

θg = 90◦ θg = 90◦ θg = 135◦, 45◦

3 15◦ pE = {−0.238,−0.064} p = {−0.586,−0.157} p = {−0.789,−0.211}
θn = 0◦ θn = 0◦ θn = 27.4◦, 152.6◦

θg = 90◦ θg = 90◦ θg = 152.6◦, 27.4◦

14 4 45◦ pE = {−0.5,−0.5} - -
θn = 45◦, 135◦ - -
θg = 135◦, 45◦ - -

16 5 19.5◦ pE = {−0.393,−0.139} p = {−0.393,−0.139} p = {−0.739,−0.261}
θn = 0◦ θn = 0◦ θn = 30.8◦, 149.2◦

θg = 90◦ θg = 90◦ θg = 149.2◦, 30.8◦

6 45◦ pE = {−0.5,−0.5} - -
θn = 45◦, 135◦ - -
θg = 135◦, 45◦ - -

Table 2. As for Table 1, except that now the grid comprises flexurally and axially deformable elastic rods. The
radial paths numbered 1–6 are referred to Fig. 10, where they are drawn as red dashed lines.

(a) Path 1 (b) Path 2 (c) Path 3

(d) Path 4 (e) Path 5 (f) Path 6

Fig. 11. As for Fig. 8, except that now the grid is made up of flexurally and axially deformable elastic rods. The
bifurcation surfaces are referred to the specific radial loading paths shown as red dashed lines in Fig. 6. Note that
the first bifurcation, the restabilization, and the final bifurcation involve only macroscopic modes.

restabilization for the solid, which falsely represents the behaviour of the elastic grid, remaining
unstable. This behaviour, discovered already in [8], is shown in Fig. 12 for κx = κy = 200.

Here, the situation is similar to that reported in Fig. 10, except that now, inside the two
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Fig. 12. An island of restabilization in terms of (PD) and (SE) emerges at the intersection of two channels of
instability. The restabilization is a genuine restabilization for the equivalent solid, which falsely represents the
elastic grid, remaining unstable and characterized by an indefinite stiffness matrix.

‘channels’ of instability, an island of stability for the equivalent solid emerges. It can be observed
that the restabilization occurs both in terms of (PD), appearing on the ‘shores’ of the island, and
of (SE), occupying the inside.

The island visible in Fig. 12 provides a counterexample demonstrating that the (PD) condition
in the solid may not coincide with the positive definiteness of the stiffness matrix of the elastic grid,
appropriately reduced to eliminate rigid-body translations. In fact, the stiffness matrix for the grid
is indefinite within the island where (PD) holds for the solid, confirming that the underlying lattice
is unstable. The reason why the coincidence is verified for the proof-of-principle model and not
for the elastic grid lies in the fact that the former is significantly less deformable than the latter.
Specifically, the elastic grid, composed of flexurally deformable rods, admits periodic bifurcation
modes that do not produce macroscopic strain, i.e. these modes correspond to null mean strain
and stress. Such modes are impossible in the structure with lumped degrees of freedom, a feature
which may inspire new applications for architected materials.

6.1 The appearance, disappearance, and reappearance of shear bands
The model of axially and flexurally deformable elastic rods leads to the unexpected emergence of
islands of instability in a region of stable (SE) behaviour. The presence of the islands implies that
radial paths, such as those labelled ‘2’ and ‘5’ in Fig. 10, can be defined, remaining inside (SE)
but grazing its boundary and finally crossing it. In this condition, a perturbation applied when
the material is sufficiently close to the (SE) boundary reveals the occurrence of strain localization,
which appears two times, the first when ‘grazing the island’ and the second ‘in the proximity of the
final frontier’ (inclined at 45◦). This is illustrated in Figs. 2 and 13, referred to the paths labelled
‘5’ and ‘2’, respectively. The figures report the maps of (the modulus of) incremental displacements
produced by the application of a perturbing force dipole (a quadrupole in Fig. 13) at increasing
prestress, referred to the value pE , corresponding to the first (SE) loss. In both figures, a dipole
(obtained from the Green’s function as explained in [7]) is applied in the equivalent material at a
fixed position and inclined at 45◦ (a horizontal dipole is also added to generate the quadrupole) in
the undeformed configuration, so that, due to the effect of the prestrain, both the distance between
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the two forces and the inclination change (as visible in Fig. 2, while in Fig. 13 this difference is not
visible, because of the imposed symmetry of the prestress).

Fig. 13. As for Fig. 2, except that the path labelled ‘2’ (satisfies a 45◦ symmetry) shown in Fig. 10 is considered
and the perturbing agent is a quadrupole (shown red). Along a radial path entirely within the (SE) regime, a
perturbation leads to the appearance of two shear bands (vertical and horizontal), their subsequent disappearance,
and the final emergence of two shear bands (inclined at 45◦ and 135◦).

Both figures show the appearance, disappearance, and reappearance of shear bands. In partic-
ular, Fig. 2 shows the emergence of a first, ‘grazing the island’, vertical shear band, corresponding
to the SE/Parabolic boundary, while the second localization occurs in a mixed mode, becoming
visible near the SE/Hyperbolic boundary, the ‘final frontier’. Fig. 13 satisfies a 45◦–symmetry, so
that twin shear bands are always generated, horizontally and vertically the first time, inclined at
45◦ the second time.

7 Conclusions
This study introduces a conceptual model based on a unit cell with 10 degrees of freedom, which
generates a rectangular lattice when periodically repeated to tessellate the entire plane. The
unit cell consists of bars with only axial compliance, connected by elastic hinges. The proposed
mechanical model enables a manual homogenization process to rigorously derive an equivalent
elastic material. The model reveals unexpectedly complex behaviour, in which strain localization
may occur in the form of shear, compaction, or mixed-mode bands. Perhaps more interestingly,
both the homogenized material and the underlying lattice demonstrate restabilization. Along a
compressive radial path defined in the stability map, the material typically transitions from an
initially stable behaviour to a loss of positive definiteness of the elasticity tensor, followed by
ellipticity failure and shear band formation. As the compressive load increases along the path, the
material traverses an unstable region, eventually restabilizing by entering a new stable region and
culminating in a second loss of ellipticity and the emergence of mixed-mode strain localization.
The mechanical behaviour observed in the lumped model has been confirmed through rigorous
homogenization of a lattice composed of rods deformable in both bending and axial modes. This
lattice exhibits additional remarkable features, such as closed instability domains within stable
regions and the possibility of shear band formation and subsequent restabilization along a radial
stress path entirely within the ellipticity domain.

Despite their mechanical simplicity, these models exhibit a wide range of mechanical behaviours,
including several novel features. This versatility can inspire a new generation of architected mate-
rials with tuneable instabilities.
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